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Abstract

Let g be a finite-dimensional nilpotent Lie algebra over an arbitrary field of characteristic zero.
We study the transverse Poisson structure to a symplectic leaf of the dual space g*, endowed with its
canonical Poisson structure. We use two methods for this study, one is purely algebraic, the other is
geometric. We prove that the transverse structure is a Poisson structure over the formal power series
algebra in d indeterminates k[ X, ..., X], where d is the codimension of the symplectic leaf in
q*. We show a strong similarity between this Poisson structure and the associative algebra structure
over this formal power series algebra introduced by Fokko du Cloux to describe the infinitesimal
neighborhood of the corresponding representation via Kirillov’s correspondence. © 1999 Elsevier
Science B.V. All rights reserved
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0. Introduction

Let g be a real finite-dimensional nilpotent Lie algebra. Let us consider a coadjoint
orbit M in the dual space g*. It is a symplectic leaf of the Poisson structure of g*. The
notion of transverse Poisson structure, which is a kind of Poisson algebra has been defined
by Weinstein [36]. Moreover, Dixmier—Kirillov's theory [8] associates to M a primitive
ideal J of the enveloping algebra U(g) of g. Fokko du Cloux [11] has defined a notion
of infinitesimal neighborhood of J the space Prim U (g) of the primitive ideals: it is an
associative algebra. The underlying philosophy of this work is that Fokko du Cloux’s algebra
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must be a quantization of the Poisson algebra defined by Weinstein. Let us consider the
case M = (. Then Weinstein’s algebra is S(g), Fokko du Cloux’s one U(g), which is
rightfully considered as a quantization of S(g). In a general case, in the relation between
Weinstein’s algebra and that of Fokko du Cloux, one is less evident. However, we shall see
from examples, there are convincing similarities.

Let us describe the two tackled problems. We fix a commutative field £ with characteristic
zero. Let g be a nilpotent Lie algebra and M a coadjoint orbit in the dual space g* of the
Lie algebra.

Let us consider S(g) the symmetric algebra of g considered as the algebra of the poly-
nomial functions on g*. It is a Poisson algebra. Let I be the ideal formed by the functions
vanishing on the orbit M. It is a Poisson ideal, S(g)// is the algebra of the regular functions
on M, provided with the Poisson bracket deduced from the Poisson structure of S(g) [35].
It has been proved by Vergne [35] for the generic case, by Amal et al. [1] and Pedersen
[25] in the general case, that S(g)// is a Poisson—Weyl algebra: In other words, there exist
r € N and 2r elements p;, q;,i € {1,...,r}of S(g)/I such that
1. S(@)/I =klpt,---, priqis - -, qr,

2. {pi.pit =1{gi.9;} =0, {pi,q;} =8; ; (Darboux’s relations).

The first problem which we considered is the following one. The functions p;, g; are the
restrictions of polynomial functions f;, g; defined on g*. It is natural to wonder whether we
can choose extensions such that Darboux’s relations are still being satisfied. In algebraic
terms, does there exist a homomorphism of Poisson algebras S(g)/I — S(g) which is a
right inverse to the canonical projection S(g)—> S(g)/1?

The simplest examples show that it is not true. However, we can often find rational
functions f;, g; defined on an invariant Zariski open set of ¢* including M and still satisfying
Darboux’s relations: for example such is the case if the orbit M is generic [35] or, at the
extreme opposite if dim M = 0.

Although we cannot formally prove it, in general, it appears impossible. Here, we prove
that we can find “functions” ﬁ, 8i, defined in a formal neighborhood of M, still satisfying
Darboux’s relations. In other words, the projective limit §(g) = ljin »S(g)/1" has a natural

structure of Poisson algebra, and the ﬁ, g are in §(g).

This theorem is inspired and motivated by similar results of Fokko du Cloux on the
enveloping algebra U(g) of g. Let us consider a rational ideal J of U(q) (this is a prime
ideal such that the center of the fraction field of U(g)/J is equal to k [8]). Dixmier—
Kirillov’s theory asserts that U(g)/J is a Weyl algebra, generated by 2r generators a;, b;,
i €{l,...,r})(r is the weight of J [8]) satisfying commutation relations

lai,a;] = [b;, b1 =0, lai,bjl1=4;;, i, jefl,...,r}

Fokko du Cloux proved that in the completion U (g) = lim,U(g)/J" we can find

elements a;, l;: projecting itself by canonical projection U (g)—> U (g)/J on the previous
elements, and still satisfying the same commutation relations.

Ourresultis related to those of Weinstein’s. Let us assume that k¥ = R. Letus fix an element
u of M. Then there exists an open neighborhood of u in g* (for the usual topology), and
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in V analytic functions f;, g; extending the p;, ¢;, still satistying Darboux’s relations. The
comparison of these two results, and examples that we have calculated, suggests there exists
a neighborhood V' of M in g* (for the usual topology), and in this open analytic functions
(and may be algebraic) fI.M , giM extending the functions p;. ¢;, still satisfying Darboux’s
relations and such that, moreover, the restriction of partial derivatives to M are polynomial.

The second problem which is studied concerns the transverse structures. Let us denote
C the commutant of the lifting of the f;, and g;:

C={ceSW@ {6 fil=0.{6.61=0 Yie{l.....r}}.

Let /1 be the codimension of M in ¢*. We prove that C is an algebra of formal series in
h variables, provided with a structure of Poisson algebra singular at 0. Its isomorphism
class does not depend on the considered choices. We prove that for (k = R), this algebra
is the algebra obtained from Weinstein’s one (it is a Poisson structure in a neighborhood
of zero in R", singular at 0) if we consider Taylor's series at the origin. The use of Dirac’s
brackets formula allows the calculation of the commutant C with an extreme simplicity.
The transverse structure is given, in convenient coordinates, by rational functions. We show
that the graded algebra of C in its maximal element is isomorphic to the symmetric algebra
of the stabilizer g, at a point of the considered orbit. Our construction of C is similar to
Fokko du Cloux’s construction. He considers the commutant D of the elements u;. ¥; in
the completion U(g):

D=1{decU) |[d,41=0.1d.61=0 Viefl..... ri}.

In general this commutant is a non-commutative algebra of formal series in / variables.
This formal similarity between C and D, as well as similarities between the formulae
(see examples), are a first justification to our assertion “Fokko du Cloux’s algebra is a
quantization of Alan Weinstein’s transverse structure”.

1. Definitions and some properties of Poisson algebras and Poisson modules
1.1. Poisson algebras and Poisson ideals

Let us recall that a Poisson algebra is an associative unitary commutative algebra A en-
dowed with a bilinear map A x A— A denoted by {-, -}, called Poisson brackets, providing
A with a Lie algebra structure and satisfying the relation {ab, ¢} = a{b, ¢} + {a. c}b for all
a.b,cin A.

In A, two elements a and b are said to commute if {a, b} = 0. A Poisson ideal of a
Poisson algebra A is an ideal of A considered as an associative algebra and an ideal of A
considered as a Lie algebra.

Example 1. Let g be a Lie algebra, the symmetric algebra S(q) of g has a structure of
Poisson algebra defined by the bracket {x, y} = [x, ¥} for all x, y of g. Let .A the adjoint
algebraic group g. Any .A-invariant ideal of the symmetric algebra S(g) is a Poisson ideal.
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For all subset X of the dual g* of g, .A-invariant by the contragradient action, the ideal I (X)
of the zeros of X is a Poisson ideal. The algebra S(g)/I(X) is a Poisson algebra.

When I is aPoissonideal of A, the bracket {1, I}is aLieideal butis not generally a Poisson
ideal: the condition A{I, I} C {I, I} may not be satisfied. (Examples are given in [31].)

In part 2, we shall use the descending series of a Poisson ideal I defined by 17 = [
and ®,411 = {I, ®,} forn > 1. They are Lie ideals. We shall use the Lie ideals {I", I},
n, m € N. Provided with the Poisson bracket, 1/1° is a Lie algebra over the ring A/1.

Proposition 2. We have
O {1yt fornandm e N(I7 =19 = A)
(2) (a) DpI + I? is a Poisson ideal, forn > 1,

) (DI + 12, Dl + 1% C Dyl + 12

1.2. Poisson modules, Poisson cohomology, Poisson extension of a Poisson algebra

1.2.1. Definition of a Poisson module over a Poisson algebra

Definition 3. Let A be a Poisson algebra. Let M a vector space and End M be the algebra

of the endomorphisms of M. The vector space M is called a Poisson A-module if we have:

(1) A homomorphism of associative unitary algebras p : A—> End M; we shall denote
playim) =a -m,a€ A,me M.

(2) A homomorphism of Lie algebras w : A— End M; we shall denote w(a)(m) = [a, m],
acAmeM.

(3) The following compatibility relations between the structures defined by p and w:

[b,a-ml=a-[b,m]l+ {b,a}-m, [ab,m]l=a- [b,m]+b-[a, m].

Example 4. A is a Poisson A-module. More generally, if I is a Poisson ideal, 7 and A/]
are Poisson A-modules.

Property 5. Let M and N be Poisson A-modules. Then the tensor product M @4 N is a
Poisson A-module provided with the structure:

l.am@rn=am @ n=mQ@4 an;

2. [am@anl=la,ml@41n+mQPala,n]l, acA, meM,neN.

We have a correspondence between Poisson module and Rinehart module. For further
information, cf. [16,24,30,31].

1.2.2. Definition of a cochain complex and of the cohomology Hp ; (A, M):
comparison of Hj . . (A) with H} o, (A)

The cohomology of a Poisson algebra A has been defined by Lichnerowicz [19] when
the algebra A is the algebra of functions C*°(N), N being a Poisson differentiable variety
C*°. For the general case, see [16,33].
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Property 6. Let M be a Poisson A-module and n € N. Let us denote Alt"P (A, M) the
vector space defined by forn = 0, Al LA, M) = M, forn > 1, Al P A, M) =
{f : A" M; f is multilinear alternating, and a derivation of A into M in each variable}.
Let Alt? (A, M) = @®,50 Alt" P (A, M). Letd : AtP (A, M)— AltP (A, M) be the endo-
morphism defined by

dov(a)) = [a,, v]if v € Alt"P(A, M) = M,
dllv(a|7a2a~--9ail+l)
f=n+1
= Z (_1)I+l[ai’v(alv -~-7’a\iv ---«an+l)]
i=1
+ > DMulaighar. . G .. Gang), ifn >0, Va; € A

I<i<j<n+l1

Then the couple (Alt?, d) is a complex of vector spaces of degree +1.

We denote by Hp ... (A, M) the cohomology of the the complex (Alt?, d), called
cohomology of the Poisson algebra with values in M. For M = A, Hp . (A, A) will be

called the cohomology of the Poisson algebra A and will be denoted Hp ision (A

1.2.3. Comparison of the G. de Rham complex of a Poisson algebra with its Poisson
complex

Let S be an associative unitary and commutative algebra, £25 the S-module of the differ-
entials of S over k and d : §— 25 the associated derivation [3, Chap. 3, p. 134]. Let A($25)
the exterior algebra graded with the pth exterior powers A”(§2s) of the S-module §25 and
(d*®, A(L25)) the de Rham complex of S over k. We denote H(Ie Rh,dm(S) the associated
cohomology [3, Chap. 10, p. 43].

In [31] we describe a morphism of complexes ¢ from the de Rham complex of A into the
Poisson complex (d, Alt? (A, A)). We deduce by passage to the quotient the homomorphism
of graded vector spaces H(¢) : Hj gy, (A)——> Hgoisson(A). There is an important case
where H (¢) is an isomorphism: the algebra A is a symplectic algebra over k. Let § be an
associative unitary commutative algebra and an element X in Der S. There exists one and
only one odd derivation iy : A(£25)—> A(£25) of degree —1 such that i x (ds) = X (s). for
all sin §.

Let w € A2(§25). The couple (S, w) is called a symplectic algebra (see [20, Definition
1.3]) if:

1. dw =0,

2. the map I, : Der S— 25 defined by 1,,(X) = ixw for X € Der § is an isomorphism
of S-modules.

We shall denote X}, the unique derivation such that iy, = db. Any symplectic algebra

(S, ®) is a Poisson algebra provided with the bracket {a, b} = ix, (ix,w) [20]. We have

{a, b) = ix, (db) by definition of X; and hence {a, b} = X,(b). We have the following
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property stated by Lichnerowicz [19, p. 259] in the context of the Poisson manifolds which
are symplectic:

Property 7. Let (S, w) be a symplectic algebra, then the de Rham and Poisson cohomolo-
gies S, Hj ppam (S) et Pomon(S), are isomorphic.

Proof. We show that H(¢) is an isomorphism of complexes (see [31, p. 16]). O

1.2.4. Extensions of Poisson algebra

Definition 8. Let B be a Poisson algebra and M a Poisson B-module. A Poisson extension
of B by M is the data of a Poisson algebra A and of an exact sequence of vectors spaces (£)

&) :0—M-—54-L5 B0

such that the map f is a Poisson algebra homomorphism and where the homomorphism of
vector spaces g satisfies

() g(b.m) =ag(m) et g([b,m]) = {a, g(m)},

withm € M, b € B and a € A such that f(a) = b.

The extension (§) of B by M will be called inessential if there exists a homomorphism
of Poisson algebras u : B— A such that f ou = Idg.

The Poisson extension (§) of B by M will be called a split extension by a homomorphism
of associative algebras if there exists # : B—> A homomorphism of associative algebras
satisfying f o h = Idp.

The setof equivalence classes of split extensions of B by M will be denoted by E X (B, M).

The set EX (B, M) is in bijection with H, (B, M). We have the following theorem:

Polsson

Theorem 9.
(1) If a belongs to Z*(B, M), then the Poisson extension of Bby M:
€ :0—M 5B M), > B—0
associated to a where (B ® M), is the vector space B ® M endowed with the structure
of Poisson algebra defined by
) (b,m)(b',m")=(bb',bm' +b'm) et {(b,m)(b,m)}
= ({b7 b,}7 [b! m/] - [b/, m] + a(b7 b/))ﬂ
b,be B,m,m ¢ Mandt(m) (0, m) p(b,m) = b, belongs to EX(B, M).
Q) If¢¢):0—M 54 ﬁ B—0isasplit Poisson extensionof Bby M in EX(B, M)

with the split homomorphtsm of associative algebras s : B— A, then we can associate
to (€) a 2-cocycle, w, element of Z2 (B, M) defined by

Poisson

gl@x,y)) ={s(x).s(»} —s{{x,¥h, x,ye€B.
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Moreover, if s’ is another homomorphlsm of associative algebras satlsfylng the equality

f os' = 1dg, the cocycle ' associated to s’ vansﬁes w — o = dyu, u being the

derivation of B into M defined by g o u = s . We have in H};mwn (B. M), the
equality w = @'.

(3) We have a bijection of H Pc,Mon(B, M) onto EX (B, M); the inessential extensions form
a unique class in EX (B, M) corresponding to the zero in H2 (B. M).

Poisson

Proof. (1)and (2) are easily proved.
(3) Let @ : Hp-mwm(B, M)— EX (B, M) the map such that ® (@) = (), where £ is
defined by

&) : 0—M (B @ M), > B—>0.

Let ¢ EX(B.M)— Hp_ (B, M) the map which associates to (£) : 0— M —»

A —‘q B—0 the equivalence class @ where w is defined by g(w(x, ) ={s(x), s(y)} —
s({x ¥yD, s © B—— A being the homomorphism of associative algebras satisfying the
equality f os = Idg. We verify that @ and ¢ are well defined (see [31]) and that we have
(po(b Id[:X(B.M)and¢O(p IdH*(B.M)‘ O

1.3. The Weyl algebra W, (k)

1.3.1. Definition of the Poisson—Weyl algebra W, (k) and of its cohomology
A commutative algebra generated by the family (X, ..., X,,. Y,..... Y,)) provided with
the structure of Poisson algebra such that

Viijell..on) (XY =65 (X, X;)={V.¥}=0

is called a Poisson—Weyl algebra of order n, and denoted by W, (k).
The Poisson-Weyl algebra W,, (k) is thus the algebrak[Xy,.... X, Y|...., Y, 1provided
with the bracket

i=n

3f dg 9of dg )

, g} = — v{, e k[X,Y].
S ;(ax,ay arax; )7 8 €KX Y]

A Poisson algebra is said to be simple if it has no other Poisson ideal than (0) and A. We

show that the Poisson-Weyl algebra W, (k) is simple and that its center is the field k. The

Poisson—Weyl algebra is a symplectic algebra (W, k), w = Z, 1 dX; A dY;) which the
associated Poisson bracket is the bracket of W, (k) as Poisson algebra.

Proposmon 10. Let W, (k) be the Poisson-Weyl algebra of order n. Then
(D) HYson Wa k), Wy (k) = &,
(2) forall p > | Hyy (W, (k), W, (k) = 0.

Poisson
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Proof. The Poisson and de Rham cohomologies coincide by virtue of Property 7. The de
Rham cohomology of W, (k) is acyclic in degree greater than zero from Nicolas Bourbaki’s
theorem [3, Chap. 10, p. 159 example]. O

1.4. Centralizing sequence of a Poisson A-module M : properties of nilpotence

Let A be a Poisson algebra, M a Poisson A-module. By definition
HYA,M)={meM:Yac A [a,m]=0).

Each element of HY(A, M) will be said to be central. Let (x|, ..., x,) a sequence of
elements of M. We say that the sequence of elements (x[, ..., x,) of M is centralizing if
x) is central and if we have the inclusion, for all i > 2,

[A, x;] C Ax;—y + -+ Ax).

In this case, forall h € {1,...,n}, Iy = Ax; +---+ Ax) is a Poisson A-submodule of M.
We check this easily (cf. [31]).

Proposition 11. Let (x|, ..., x,) be a centralizing sequence. Let us set I, = Axp +-- -+
Ax, h e {1,...,n}et Iy = {0}. Then we have

(1) {1y, In} C Lnly + Ip—y, YR =2 0(1—; =0).

() Yp>2, Dply, C I} + Li_pt.

Corollary 12. Let I be a Poisson ideal. We suppose that I is generated by a centralizing
sequence. Then:
(1) ifthe length of the centralizing sequence is h, then

Dpatl C 17

(2) foralln € N, there exists p € N such that ®,1 C I".

Let g be a Lie algebra of a linear algebraic group and .A its adjoint group. Let M be a
coadjoint orbit of A in g* and I the Poisson ideal of the Poisson algebra S(g) associated to
this orbit. We know that the S(g)/f-module 7/12 is a Lie S(g)/I -algebra. Let P(M, k) be
the algebra of polynomial functions on the orbit. The algebra P(M, g) of the polynomial
functions on M with values in g is a Lie algebra over the ring P(M, k), The structure of
P(M, k)-module is defined naturally, the multiplication by

Lf, ) =[f(), h(V)], f heP(M,g), veM.

The Lie algebra P (M, g) is isomorphic to the Lie S(g)//-algebra S(g)/I ® g obtained by
extension. We show that the Lie algebra I /17 is a Lie subalgebra of S(g)// ® g.

Proposition 13. Let M be a coadjoint orbit of g* and I the associated ideal. Let P(M, q) ~
S(g)/I ® g the Lie algebra over S(g)/I of the polynomial functions on the orbit M with
values in g.



M. Saint-Germain/Journal of Geometry and Physics 31 (1999) 153194 161

Then the map ¢ : 1/1>°—> S(g)/1 ® g such that for f inl andvin M
¢(f +1H0) =dv f
is an injective homomorphism of Lie S(g)/I-algebra.

Proof. Let v : I— P(M, g) be the function such that we have, for 4 in / and v in M,
V¥ (h)(v) = d,h. For all v in M, the tangent space T, M of M at v is the orthogonal gf, of
the stabilizer g, of v in g*. We deduce, # vanishing on M, that the linear map d,  vanishes
on gf‘ that is that we have d, h € (gf;)L = g,.

Let us verify that the map v is defined by passage to the quotient. We have v (/) = 0.
Indeed for f, gin/ and vin M itappearsthat ¥ ( fg)(v) = d,(fg) = f(W)dug+g(W)d, =
0. Thus the map ¢ : 1/12—>S(g)/1 ® g is well defined, we verify that it is S(g)//-linear.
It is injective, since we have f(v) = d,f = 0 for v € M. Let us verify that for all f et
ginl wehave ¢({f + I°, g + I*}) = [¢(f + I7), ¢(g + I?)], that is that d{f, g}(v) =
[d. f.d.g], v € M (for a particular case of this formula see [13, p. 585, 2°]). By definition
of the bracket in S(g), we have

{f.g}v) =v(d, f.dgl), veM,
and by definition of the derivative it appears that

do(f. g h = {f g}y +th’) —{f. g}(v) (mod 1), h e

We must evaluate

{f. g} +1h) = {f, g}(v) = (v + th)([dyssn [, dviengl — v({dy f, dugl). (*)

We have

dosinf —dyf =td* fh  (mod 1°),
dying —dyf =td’g.h  (mod 17).

Reporting in (), we use the linearity of the bracket in g and the fact that d f (v) and dg(v)
belong to g,, we obtain { f, g}(v +th) — {f, g}(v)/t = h([d, f. d,g]) (modt). O

Corollary 14. Let i € g*. Let us assume that the stabilizer of u is nilpotent: 2,5, =
0 for some n of N. If I is the associated ideal of the orbit through u, then we have
.1 C I

Proof. Indeed for all f in //17, its image by ¢ at a point v of M belongsto g,. O
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2. Lifting map, commutant and graded algebra
2.1. General lifting Poisson homomorphism

2.1.1. A lifting theorem

Theorem 15. Ler B be a Poisson algebra and M a Poisson B-module. Let (§) an extension

of BbyM (§) . 0— M LIy —> B—0. Let C be a Poisson algebraand h : C— B

a homomorphism of Poisson algebras. Let us assume that there exists a homomorphism of

associative algebras s : C— A such that we have f os = h and Hgomon Cc,M)=0.
Then

(1) there exists r : C—> A a homomorphism of Poisson algebras such that f or = h

(&) : 0 M_s3s, A_f B 0
‘RT"
C

(2) if moreover lenisson (C, M) = 0, then two homomorphisms of Poisson algebras, r and
r' suchthat f or = h et f or’ = h, satisfy the property:
there exists m in M such that for all x of C

r'(x) =rx) + {r(x), g(m))}.

Proof. See [31,p.29]. O

2.1.2. Study of an isomorphism of Poisson modules

Let M be a Poisson A-module. We endow the A-module A ® H°(A, M) of the structure
of Poisson A-module defined by: [a, b @ m] = {a, b) @ m.

The following theorem is similar to Fokko du Cloux’s result [11, Lemma 4.2.1, p. 178].

Theorem 16. Let us assume that M is generated by a centralizing sequence (x1, ..., Xp)
and that A is isomorphic to a Poisson—Weyl algebra.

Then the linear map ¢ : A ® H, Pomon (A, M)—> M such that p(a @ m) = a - m with
a € Aandm € M is an isomorphism of Poisson A-modules. Moreover, the dimension of

Pmmn(A M) is finite.
Proof. We shall show by induction on r that ¢ is abijection. For n = 1, the surjection of ¢ is
obvious and the injection of ¢, is obtained by the simplicity of A. The induction hypothesis
states thus: Let us assume that for the A-module M’ generated by a centralizing sequence
having for length n — 1, we have an isomorphism of Poisson A-module A ®; H A, M) ~
M'. Then let M = Ax| + -+ + Ax, be a module generated by a centralizing sequence
having a length n.

Since Ax; is a submodule, M/Ax is a Poisson A-module generated by a centralizing
sequence (X2, X3, ..., X;) with X = x; + Axy, i € {2,...,n} of length n — 1. From the
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short exact sequence of Poisson A-module
f )
0—> Ax| —> M -5 M/Ax;—>0,
we deduce the long exact sequence

(A, Ax))—H . (A, M)—> H))

Poisson Poisson

(A, M/ AX))—> Hp oo (A, AX)—> - -

0— H)

Poisson

If we have x; = 0, then it appears that the equality H[loisson(A, Axy) = 0. Otherwise the
isomorphism Ax| = A and the fact that H} , (A, Ax|) = H}, (A, A) vanishes, is a
consequence of Proposition 10.

We have the following diagram:

0isson

0— AR HY on(A AT1) — AQHY (A M) . A® HP on(A, M/AT1) 0
I |s I
0 Az M M/Ax,

From it we infer that ¢ is an isomorphism.
: 0 : — 0 -
Let us show that dim Hp ;. . (A, M) est finite. When M = Ax,, then Hp, (A, M) =
kxi. An induction similar to the previous one achieves the proof. O

2.2. Lifting of AJ1

In the rest of the paper, for a Poisson algebra A and I a Poisson ideal of A such that
every Poisson ideal of A is generated by a centralizing sequence and such that the algebra
A/I is isomorphic to Poisson—Weyl algebra, we shall say that “A and I satisfy the lifting
hypothesis”. Let A= ljr_n »A/I" the projective limit, it is a Poisson algebra. We shall denote

fu: A—A /1" the canonical projection.

2.2.1. Construction of a lifting homomorphism from A/I into A

Theorem 17 (Lifting theorem). Let A and I satisfy the lifting hypothesis. Then there exists
a homomorphism of Poisson algebras ¢ : A]I—> A called lifting homomorphism such that
fro@ =1,

Proof. We proceed in two steps. U
First step. We shall lift A/l into A/I>. For that, we use the decreasing sequence of

Poisson ideals 12 + 2,1, n > |, from Proposition 2. In the first instance, we have the exact
sequence of Poisson algebras
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€ 0 ___L I/®yI+1%) iz A/@®,I+1%) w2 A/l .0

|

AJI

We apply Theorem 15 to this diagram. It is clear that (£) is a Poisson extension of A/
by I/(®D>] + 1%). Thus 1/(®>1 + I?) is a Poisson A/I-module. The A/I is a Poisson—
Weyl algebra, hence it is a commutative algebra generated by an algebraic independent
family over k; by an arbitrary lifting of the generators of this algebra, there exists a
homomorphism of associative algebras such that @12 o s = Id4,;. It remains to check
H2. . (A/I,1/(®:1 + I?)) = 0. By hypothesis, the Poisson A/I module I/(D31 + I?)
is generated by a centralizing sequence. From Theorem 16 appliedto M = I /(D21 + 1 %),
we obtain the isomorphism of Poisson A/I-module A/l ® Hl(,)oisson(A/I, 1/(®1+ 1)) ~
1/(,1+1%). Themodule I /(D21 +1?)isadirectsumof dim Hpy,  (A/1, 1/(D21+1%))
copies of A/I.On the other hand leoisson(A/I’ A/I) = 0 from Proposition 10. Hence we
have Hgoisson(A/I, 1/(D21 + I%)) = 0. Theorem 15 affirms the existence of a homomor-
phism of Poisson algebras r2 : A/I — A/(D2] + 1) such that ¢ 2 o ry = Iday;.
Once again, we apply the same theorem to the diagram for p > 3

0 DI+ 12/ D1 [+ 1P A/ D I+T? _eanr | A/D, I+, 0

\I”

A/l

and we obtain | homomorphism of Poisson algebras such that ¢, ;.| o rpr) =7, If
the natural number » is the length of the centralizing sequence generating /, we use the
property of nilpotence

Dl + 12 =17

from Corollary 12. We have g1 20r2 =Id4/s, @23073 =72, ..., @y p41 O+l = 1y And
thus we obtain f15 o 7,41 = I4, where the map f) : A/I?*—> A/I is the canonical
projection. Letus setuy = ry,4|, the first step is ended; there exists a Poisson homomorphism
of Poisson algebras u; : A/I——»A/I2 such that f1 2 oup =1Iday;.

Second step. Step by step for # > 2, using Theorem 15, we have the diagram

0 ___, Ih/rh+t | AJIMY S | AJTR L0

o

A/l

where the module I"/I"*t! is a Poisson A/I"* module. Since the module I /17! is a
Poisson A/I module via up, there exists #;+] homomorphism of Poisson algebras such that

Sfrohl 0 Un = Uhyt.
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We conclude to the existence of the map ¢: A/[ —> A such that o(x) = (x,u2(x),
u3(x), ..., up(x),...). The map @ is a homomorphism of Poisson algebras satisfying
f] o a = IdA/] .0

2.3. Uniqueness of the lifting homomorphism from A/I into A

2.3.1. Study of a Poisson automorphism
Lemma 18. Ler I be a Poisson ideal of A generated by a centralizing sequence and A=
lim, A/I". Then foralli € I, eddi = Yoo 1/k! ad* i defines a Poisson automorphism of

Poisson algebras A, leaving stable I and acting trivially on A / I.

Proof. The map e is well defined, since for all x € Aandn € N, there exists k € N such

that ad® i (x) € (I")"; It is sufficient to use Corollary 12: Vn e N 3p € N : 1 ClI.
O

2.3.2. Uniqueness of the lifting homomorphism

Theorem 19. Let A and [ be a Poisson ideal A satisfying the lifting hvpothesis (see

Section 2.2). Let p/, p" be two homomorphisms of k- algebras from A/l into A which

are right inverse of f1 : A—>A/1 Then, there exists i € T such that p’ = e*/ o op.

Proof. We know that if 4 is the length of the centralizing sequence generating I, then we
have

’Dh+ll+12 = 12
(Corollary 12). We have the sequence of homomorphisms of Poisson algebras
A/1”+l—‘>A/1n_)A/13_)A/12
A/ + P— A/ Dy I+ TP — A/ + 17
— A/ + IP— A/

Letusstate Jy = I, J, = Dol + 12, .., Jp = D0l + 12, Ty = 12, T = 1P
— I'H_l,...

Jh+/1
We have a projective limit, let us state A = lim nA/Jy. Let a be of A/I, the element

oa) = (p1(a), ;2(a), ..., py(a), ...) belongs to A= lim,A/I". Fom p(a), let us define
o(@) = (p1(a), p2(a), ..., pu(a),...) of the following form:

pi(@)=pi(a), paa)=e(p20a)),...,
on(a) =op(p2(a)), Prt1(a) = p2(@), ..., Phyn(a) = ppy1(a).
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where the map ¢, : A/12—>A/©,,[ + 2, for 2 < p < h, is the canonical map. The
element p(a) belongs to lim , A/ J,,.

Letp:A/Ji— lim,A/J,
and

P 1 A/Ji—> lim,A/J, be obtained from p and p’.

In the following, we shall show the equality 5" = o 7 for some Poisson automorphism A
and we shall deduct p” = ¢ o p. This demonstration is done step by step.

Let us state A| = p’ — p and denote P, : A—sA /J» the canonical projection. For all a
to A/1, it appears that P o A((a) = 0 denoting Z, = Ker P,, for n € N; thus the map A
satisfies

A AT — T

Let us show that P, 0 A} : A/J1—> J;/J; defines a Poisson 1-cocycle, in other words
P> o A belongs to Z! (A/Jy, J1/J2). The module J;/J> is an A/J;-module by

Poisson
a-j=Pp@)-j et [a, j)={PyB@) jlajnac A/, je /b

a simple calculation shows that (dj(P; o A} a,b) = —{P> o A(a), P> o A|(b)}. But
P> o Ay(a) belongs to J|/J» and {J), J2} is included in J>. Thus we have

di(ProA))=0,

and thus P, o A} belongs to ZPOMOH(A/.II, J1/J2). The module Jy/J> is generated by
a centralizing sequence, Theorem 16 leads to the isomorphism J;/J» ~ A/J; ® H, Pomon
(A/Jy, J1/J). But the equality POINH(A/JI,A/JI) = 0 (Proposition 10), implies
H! (A/J1, Ji/J2) = 0. The map P> o A is therefore a coboundary; this implies

Poisson

Py o Aj(a) =la, ui],

for all @ of A/J| and for some u| € Jl/Jz From this, we deduct that A{(a) — {vi, p(a)}
belongs to Ker P, = Ja for some vl € .I] Since v| € J|, according to Theorem 18 e s
is a Poisson automorphism from A onto A. We have

ad v

7'(a) = eV 5(a), modulo J;.

Let us denote p) = e V1 5.

Az = p’ — pi, then the element P; o A>(a) belongs to Ker P, = J~2
Following step by step, at the end of a first stage

o~ 4 ) 4 ~ 4 2

pl(a) = edd Lhedd U1, ‘ead mp(a)’ modulo Jhot = (I_)/\’
where v| € Jy, ..., v, € J,. We continue

~ — sad vygp ad viyp ad vy dul 7

pla)=e ceee ---e*"5(a), modulo J,q .
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The % ¥i+# are Poisson automorphisms A from Theorem 18. Letus set ¢, = e*d ' ... g4,
it is a Poisson automorphism lim »A/J, by composition. For all a € A/J| the sequence

(¢/(a))16N inAisa Cauchy sequence in A. Hence the sequence | (D1 (a@))en 1s convergent
in A separated complete Let us denote ¢> a) = hm[_,xdu (a), ¢> belongs to Autpoisson A
Finally, we have found ¢> : A— A Poisson automorphism such that 5" = ¢>o 0. If we restrict
ourselves to the ideals /", from this we deduct the existence of the map ¢ of Autpgisson (Z)
suchthat o' =¢op. O

Corollary 20. Let us assume that the hypotheses of Theorem 19 are satisfied. Let C be the
commutant associated to a lifting Poisson homomorphism from A/l into A.

Then the algebra C is independent from the choice of the lifting homomorphism (modulo
Poisson isomorphisms).

2.4, Study of the commutant

2.4.1. Properties related to the completion

We shall call a filtration of a Poisson algebra A, a decreasing filtration of A given by
vector subspace (A, ), ez such that
1 AjAn CAppmYnomel
2. (A, Ap) C Apgem-1 Yo, me Z.
Let I a Poisson ideal A, the I-adic filtration of A is defined by A,, = I, n > 0 and where
I"=Aforn <0.

If A is filtered by (A, ),e7, we shall call filtration of a Poisson A-module M, a decreasing
filtration of M for the structure of A-module by subspaces (M,,),cz with the additional
condition

AM,;, C My, et [Ap, Myl C Myp—1, nom € Z.

The [-adic filtration of M is defined by: M, = I"M.

Let A be a Poisson algebra and [ a Poisson ideal. We endow A with the topology associated
to the [-adic filtration of A. A completion of A is a filtered separated Poisson algebra A
complete for the associated topology, provided with a homomorphism of Poisson algebras

4 : A—> A continuous and satisfying: for any filtered separated complete Poisson algebra
A’ and any continuous homomorphism of Poisson algebras f : A— A, there exists a
unique and continuous homomorphism of Poisson algebras f:A—>A'suchthat foj4 =
f. A completion of [-adic is unique up to Poisson isomorphism, hence we shall say the
completion of A.

We choose A = 1<i_n‘1,,A/1” filtered by (I")" = Ker(K——»A/I") and the map j, :
A—> Adefinedby ja(x) = (x+1, x+1%....). Wehave jo(I") = ja(A)NKer(A— A/I")
and the image j4(A) is dense in A.

Likewise, let M be a Poisson A-module endowed with the I-adic filtration, we define
a completion of M denoted M. Then a completion is unique up to Poisson isomorphism.
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We take M = lim , M/I" M, filtered by the sets Ker(M\—>M/I"M). We denote by ja :

M—>M the map defined by jy(m) = m + 1M, m + I*M, .. ), it is a homomorphism
of Poisson A-module. We have ]M (I"M) = ]M(M) ﬂKer(M—>M/I”M) forn > 1, and
the image jp (M) is dense in M. Moreover, M is a Poisson A-module such that for all a
in A and all 77 of M we have jala)im = a - m et [ja(a), m] = [a, m]. From this equality,
we deduct jy(a-m) = ja(a)ju(m) et ju(la,m]) = [ja(a), ju(m)] for a in A and m
in M.

Lemma 21. Let I be a Poisson ideal generated by a centralizing sequence (x1, ..., xp) of
A. Let us assume A is notherian. Then
(1) Letus set A = AJ/Ax) + - -+ Axi- | fori > 2 and 1=4x,+ +ZY,', the T-adic

completton of A, denoted by ‘A, is isomorphic as Poisson algebra to A / Aj jatxn+- -+

A]A(xl 1’)\ . .
(2) We have I = Aja(x)) + - + Aja(xn) and the sequence (ja(x1), ..., ja(xn)) is
centralizing in A.
If the sequence (xi, ..., xy) is regular in A, then (ja(x1),..., ja(xn)) is a regular
sequence in A.

Proof. See [31,p.41]. O

2.4.2. Properties of the commutant associated to a lifting homomorphism from A/l into
limA/I"

Lemma 22. Let A and I satisfy the lifting hypothesis and ¢ a lifting homomorphism from
A/l into A. Let T be the ideal Ker(Z—>A/I) onand C the commutant of p(A/I) in A.
Let us denote m the ideal TN C.

Then
1. We have an isomorphism of A/I-modules

AN NC/UA™™HYNNC = HYon (AL T/ T,
2. We have the equality
"=(IM"NC.
Proof.
(1) We have the exact sequence of Poisson A//-module for n > O:
0—> (I"tHYA — (I —> (1" /(1" T —0.
We deduct the exact sequence

0__)H190isson (A/I’ (In+l)A)__)H}90isson
(A/1, (I = H o oon (AT, (I /("D
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which is the sequence
O_>(1n+l)/\ N C—_)(I”)A e C—>HO(A/I, (III)A/(IH—FI)/\).

Let us show that the last arrow of this sequence corresponds to a surjective map. Let
y be in HY%(A/IL, (1" /(I"t)"). We have v = ¢, + (I"T)" for some ¢, € (I")"
and {¢(a).c,} € U"HY", Ya € A/I. The map ¢ : A/I—(I"*)"/(1"F>)" de-
fined by ¢(a) = {@(a),cs} + (I"t*)" is a cocycle, that is to say an element in
Z} on (AL (™Y /(1" 3)™), From the isomorphism (I%)" /(15T1)" ~ [k /1*+!
for all k € N, we can see that the A/I-module (/"*")" /(1"+2)" is generated by a cen-
tralizing sequence. From Theorem 16, we have the isomorphism (71" /(1"=%)" ~
A/T ® HY(A/IL (I""H)" /(1"F2)™). Consequently the module (/7+1)"/(1"*2)" is a
sum of copies of A/I; from the equality H}l (A/I, A/I) = 0 (Proposition 10), we
obtain

0isson

HPl()isson(A/I* (111+I)A/(111+2)A) =0.

Therefore the map ¢ is a coboundary. There exists an element b, | of (/ m+1y” quch
that we have {p(a), —b,+1} = {¢(a), ¢,} modulo (1"t~ forall a in A/1. Hence we
have

{(P(a)s Chv1} € (1"+2)/\7 Cntl =Cn+bpr1, by € (1”+])A~

Step by step, we obtain a sequence of elements (¢, ¢ )ken in (1 +ky~ such that {g(a).
Caak} € (TN ehik = Cuak—1 + bugi. wWhere b,y belongs to (I"7%)". This
Cauchy sequence of (I")” converges to an element x in (/")" satisfying

{pa),x}=0, VYaeA/l, x=y, mod(I""hH"
Thus, the sequence

0— " H"NC— UM NC—HYA/1.1"/I")—0
is exact. We conclude that

(I N C/U™Y N C x> Hpoon( AL T 1T

forn > 0.

The inclusion(T)” C (I"y” impliesm” C (I")"NC. To check the inverse inclusion, we
use the isomorphism of Lemma 22 (") NC/(I"T)"NC =~ Hf}oisson(A/I, 1"/ h.
Let us consider the surjective map  : 1/1? Rasr-- - Qayr 1/1% (n times)—> 1"/ ["T!
obtained by using the multiplication in /-adic graduate of A. The sets //I° being
Poisson A/I-modules via ¢, the same happened for I/1°> ®4,; -+ ®ay1 1/1° from
Property 5; we verify that y is a homomorphism of Poisson A//-modules. We have the

exact sequence of Poisson A//-modules

0—> Kerpu—>1/1* ®@ay1 -+ ®ays 1/17 (n times) Lt —o.
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From this, we deduct the exact sequence

PR— ) H()( )

0—> HO.. o (A/1, Ker p)—> HS. (AL T/T? @ayr -~ ®ay 1/1%) —5
(6!

Hf(’)oisson (A/1, In/In-H) . ngoisson(A/I’ Ker y)—

1

Hfloisson(A/I’ 1/12 ®asr - ®asi 1/12) H_(l;) ngoisson(A/I’ IH/I,H—])_') T
The map wy is said to be the connecting homomorphism. We know according to
Theorem 16 that I /17 is a direct sum of copies of A/I, and thus too 1/12®A/, @Ayl
1/17%. But the algebra A/ is a simple A/I-module. One more time the A/I-module
Ker p, submodule of the semi-simple module 1 /1% ® 4 e @an /1 2 is a direct sum
of copies of A/I. The equality Hfloisson(A /1, A/I)y = 0 (Proposition 10) implies the
following Hfl (A/1,Ker 1) = 0. Thus the sequence

oisson

Hf(’)oisson (A/I’ 1/12) ® - ® Hf(’)oisson(A/I, 1/12)

H0 g
HPoisson

(A/I, IH/II1+|)__)0

is exact. From the surjectivity of H(u), we infer the inclusion (I")* N C C (Tﬂ o,
idest(I"Y*"NC Ccm". O

Theorem 23. Let A and [ satisfy the lifting hypothesis (Section 2.2). Let us denote ¢ a
lifting homomorphism from A/l inlim,A/I" = A. Let us consider C the commutant of
w(A/I)in Aandletm =10 C. Then

1. The commutant C is a closed Poisson subalgebra and a local ring of maximal ideal m,
of residue field k satisfying

C =lim,C/m".
“—

2. Let (en)nen be a sequence of elements of C such that eg+m is C/m, e, +m?, . . ., eq()+
m? a basis of m/m?, eqp—1y41 + mPT, . eqpy + mPT! a basis of mP /mP+! for
p>2.

Then

— For all c € C there exists a unique sequence (cp)pen Of k such that

c= E cpep.

— Foralla of;fthere exists a unique sequence (ap,)pen of 9(A/1) such that

a= E apep.

3. Moreover, let us assume that A is noetherian and I generated by a regular centralizing
sequence (x|, ..., Xp), then the maximal ideal of C is of formm = Cja(x1) + Cy +
+«+ Cyy, where (ja(x1), 2, ..., ¥u) is a regular centralizing sequence, ja : A—>A
being the canonical homomorphism. The algebra C is isomorphic as an associative
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commutative unitary algebra to the formal power series algebra k[[X,,.... X,]]. n
being the length of the regular centralizing sequence generating I.

Proof.

(11 To show that C is a local ring with maximal ideal m = TN C. it is sufficient to prove
that m # C and that any element of C — m is a unit in C. The unit of A does not
belong to 7, this implies that 7 N C 3 C. Let ¥ be an element in C \ (C N 7). then T
is like (xp,...,. Yy, ...) with x; # 0 and {X, ¢(1)} = O forallr € A/I. We apply the
map fj : X—»A/I to this last relation that we know f} o @ =1Id4, and f(X) = x;
thus x| belongs to C(A/I) which is isomorphic to k as the center of a Poisson-Weyl
algebra. Hence the element x| # 0 is invertible in A/I. We deduct step by step that X is
invertible in A. Let 7 be its inverse. From X3 = 1, we see that we have, forallz € A/I,
1-{¥. ()} = 0: thus ¥ belongs to C.

Let us verify that the field C/CN T is k. We have c/cn I=Cc+ T/T by the second
isomorphism theorem of Poisson algebras. We have the injective map C + T/ T—A / 1.
but X/Tis isomorphic to A/ and since A/ is isomorphic to a Poisson—Weyl algebra
by hypothesis, it follows that: C/C N I'ck

From Lemma 22 m" = 1" NC, we deduct that C is complete for the m-adic topology:
C = lj_m,,C/m”.

(2) — Foralll € N,m!/m'*" is a vector space over C /m = k finite-dimensional. Letc € C,

then ¢ +m = cp(eg + m) for some ¢y in k. The class modulo m? of the element in m,

. . . i 3 ~ hl
¢ — cypep, has a unique representation on the basis ey +m-=. ..., eqty +m-otm/m-.
Therefore, step by step, for all p € N, there exists a unique sequence of elements
€0, . ... Ca(p in k such that

I=u(p)

c— Z cre; € m"th

=0

Thus we can construct a unique sequence of elements (c;)jer in k such that u; =

c— ZE) ¢;e; converges to 0 for the m-adic topology of C.
~ Leta € A, to approach a, we shall prove the following isomorphism:

(Ill)m/(1n+l)/\ ~ A/I ® mu/mn—H.

From Lemma 22, we have therefore the isomorphism m" /m"+! ~ H&,iw,n (A/I.
["/1""). We know that (I")"/(I"*")" =~ ["/1"*'. The module /"/1""" is a
Poisson A/I-module generated by a centralizing sequence and the algebra is A/l a
Poisson—Weyl algebra; thus from Theorem 16, we have the isomorphism /" /7 nrl
A/ ®; HY . (AL 1" /1"1) Tt follows that (I")" /(""" = A/T@m" /m" .
By using this last isomorphism with the same argument as the one used previously,
we construct a unique sequence (a,)pen of elements in A/ = @(A/]) such that

a= E apep.
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(3) We proceed by induction on the length n of the regular centralizing sequence
X1y -ney Xn)- L

Forn = 1, ] = Ax;. From Lemma 21, the ideal I is Aj4(x|). The element x| being
central and regular, also is j4(x|), the algebra A being noetherian. We check that in this
case wehave INC = C ja(x1). We conclude that if I = Ax), then the maximal ideal of
C is my = Cja(x1), generated by a regular centralizing sequence. Let us assume that / is
generated by a regular centralizing sequence of length n, I = Ax| +- - -+ Ax,. Let us state
A= A/Axi,T = 1/Ax, and A the I-adic completion of A. The ideal I = Ax3 +- - -+ A%,
is generated by a regular centralizing sequence of A witha lcngth n — 1. From Lemma 21,
the T-adic completion of A denoted by A is 1somorphlc to A, / A Jja(xy), A being the /-adic
completion of A. Let us denote by p : A—A /A Jja(x)) the canonical projection. We
notice that A/ = (A/Ax|)/(I/Ax) is isomorphic to A/I using the first isomorphism
theorem of Poisson algebras.

Let the diagram

)

AT~ A/I
4

/Aja(z1)

.
px

S S PR

Using the isomorphism

A/l ~ A/,
we check that the map p o ¢ is a lifting homomorphism 7 : A—> A/I:

pogom =Idy AT
The lifting homomorphism from A// into A / A Jj(x1) is p o @(A/I). Let us denote by
C the commutant of p o ¢(A/I) in Z/ZjA(xl). We check that C = C/Cj4(x;) from the
following lemma, which is further proved. From (1) the algebra C is alocal ring. Its maximal
ideal denoted by 7 is m/Cja(x1); ad indeed (C/Cja(x1))/(m/Cja(xy)) is isomorphic to
C/m and (C/ m) is isomorphic to k. Thus we apply the lifting hypothesis of induction
tom = AX; + --- + AX,. The ideal m is of length n — 1 and is generated by a regular
centralizing sequence of (y2, ..., y,) de C:
= Cy> + - - - + Cy,. Thus we have

m=Cjx1)+Cyr+---+Cyn,
where the sequence (j4(x1), y2, ..., ¥») is regular and centralizing.

From a classical result (see [31, p. 48]), there exists a unique isomorphism of unitary
algebras ¢ : k[[X1, ..., X,]]—C. O

Lemma 24. Under the hypotheses of Theorem 23 and its notations, the sequence
0—Cjsr(x;)—C—"C—0

is exact.
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Proof. The algebra A (respectively A /K Jja(x1)) are Poisson A/I-module via ¢ (respec-
tively p o ¢). From the short exact sequence 0—>A]A (X|)——)A——>A/AJA()(1)——-—>0
we infer the lorlg f:\xact sequence 0— H[(,’OMO (A/I, AjA (x))—> P(Won(A/I A)—>
Hr‘,)ow)n (A/I, A/AjA (x1))—> Hp'omon(A/I AjA (x1))—> - - - Hence itis enough to prove
that HPOMOn(A/I AjA (x1)) = 0; it is obtained from the following facts:

The ideal A Jja(xy)is equal to A while the element Jja(xy)isregular. From the assertion of
Theorem 23, the algebra Alisa product of copies A/I; but we have Hpoisson (A/ID AT =
0 from Proposition 10, and we use the general commutation formula Exts (B. [], M;) =~
[TExta(B. M)).

We have the equalities POnson(A/I AjA(XI)) Cjalxy), POm(m(A/I ;f)

HY on(A/T: A/Aja(x))) = C. Thus the sequence 0—> Cja (x| )——>C—->C—->O is
exact. O

2.5. Study of the graded spaces

2.5.1. Properties of the I-adic graded algebras
Let A be a Poisson algebra and / a Poisson ideal. The associated graded /-adic algebra
GriA = @0l /1 n+1 is a Poisson algebra endowed with the operations such that

T (@) (b) = Tipypn(ab), and {m,{(a), 7, (D)} = mpyn—1({a. b))

forn,m >0,a € I'"andb € I'", where m,, : I"— I’ /1" is the canonical projection et
., =0_ =)= A).

We notice that in the Poisson algebra Gr; A, we have foralln > 0 {A/], "/t =0
Ad indeed, for all n > 0 and for all x in 1", we have the relations {my(a), m,(x)} =
mp—1({a, x}) and {A, I""} C I" which implies {mg{a), 7,(x)} =0, n > 0.

We know that //I? is a Lie A/I-algebra. Therefore the symmetric algebra S4,;(//] %)
is a Poisson algebra. The injective map i : I/I>—>Gr; A is extending in a unique way
by universal property to a Poisson algebra homomorphism from the symmetric algebra
SA/I(I/Iz) into Gr; A. This homomorphism is surjective while all element of A0 e
is a product of n elements in //I°>. We have the exact sequence of Poisson algebras
Sas1/1*)—>Grj A—0. _

If we assume the existence of a Poisson homomorphism ¢ : A/I— A, the /-adic graded
algebras Gr; A may be provided with a Poisson structure of Poisson A//-module via ¢.

Property 25, Let f, : X——)A/l" be the canonical projection and m, = I"—> 1" JI"T".
We suppose there exists a homomorphism of Poisson algebras ¢ from A /I into A. Then
(1) The algebra Gr; A is a Poisson A/I-module defined by, Ya € A¥n > 0,¥x € I":

mola) .y (x) = furi(p(rola)))ma(x),

et

[mo(a), mn ()] = { fa+1(@(m0(a))), Tp(X)} 4 pne1
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(2) Let us assume mog(a) = a, a € A, we have the following formulas in the A/I-module
Gr;A:Vx,Vy € GrjA et Va € A:

[@, xy] = x[a, ] + [a, x]y,

et

[aa {xv y}Gr[A] = {[a7x]’ y} + {x’ [57 )’]}Gr,A~

Proof.
(1) Itis a simple verification.
(2) See[31,p.50]. O

Corollary 26. Under the hypotheses of Property 25, we provide Grj A with the structure
of Poisson A/I-module via ¢.
Then Hgoisson(A/I, Gr; A) is a Poisson subalgebra of Gry A.
2.5.2. Decomposition of the I-adic graded algebra and gradation of the commutant in its
maximal ideal

We see that the Poisson algebra A /1, apart from the structure of quotient Poisson algebra,
has a Poisson structure induced by this of Gr; A which is trivial.

Theorem 27 (Decomposition of the graded algebra). Ler A and I verify the lifting hypoth-
esis (Section 2.2). We choose a lifting homomorphism from A/I into A and provide Grj A
with the Poisson structure of A/I-module via ¢. Let us denote C the commutant of (A /1)
in A, m = I NC the maximal ideal of C and Gr,,C = GB,,ZOm”/m”+l the m-adic
graded algebra of C. We provide the algebra A/l ® H}(,)Oissgn(A/I, Gry A) with the struc-
ture of Poisson algebra extending the trivial Poisson of A/l and the Poisson structure of
HO. (A/I,GrjA). Then

Poisson
1. Themap ¢ : A/I®H80isson(A/1, Gr;A)—>GrjAsuchthatp(a®t) = at,fora € A/I
andt € Grj A, is an isomorphism of graded Poisson algebras.

2. We have

Gr,C =~ HY . (A/1,Gr A),

Gr(TﬂC)(Hf(’)oisson (A/1, X)) = HI(’Joisson(A/I’ Gr;A),
Gr;A >~ A/I ®Gr,C.

Proof.

(1) Letus prove that the map ¢ is a homomorphism of Poisson algebras. Leta,b € A/I and
x,y € GrjA,wehave (a®x,b®y} = {a, b}®xy+ab®{x, y} and we use the fact that
{a,b} =0, {a,x} = {b, y} = 0in Gr; A. The map ¢ is an isomorphism. It is a conse-
quence of Theorem 16. Foralln > 0, the module /" /7"*! is a Poisson A //-module gen-
erated by a centralizing sequence and A// a Poisson-Weyl k-algebra; thus, we deduct
the isomorphism A /I ® Hy,. . .(A/I, I" /1"y ~ ["/["*+ By property of the tensor
product and commutation of the Poisson cohomology with the direct sums, we obtain
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A/T @ HY o (A/1,Gr A) =~ Gr/A.

(2) By virtue of Lemma 22, we see that (I")"NC/(I"t)"NC ~ Hgoisson(A/I, 1"/ 1Y,
But we have the equality (/") N C = m" and therefore the isomorphism m” /m"~' ~
HY(A/L I/ 1" forn > 0.

By commutation of the Poisson cohomology with the direct sums, we conclude that Gr,,C =

HU(A/I, Gr; A). By using the item one, we have Gr;A >~ A/I ® Gr,,C. O

3. Lifting map and symmetric algebra of a nilpotent Lie algebra: transverse
structure and commutant

3.1. Algebraic study: lifting homomorphism from S(g)/l into 1im , S(g) /1" : associated
commutant

3.1.1. Invariant ideals, Poisson ideals and centralizing sequence of the symmetric algebra
of a nilpotent Lie algebra

Let g be a nilpotent finite-dimensional Lie algebra. Let us recall that the adjoint group
of g is the subgroup of Aut(g) generated by the expad x, x € g. We denote it by I". This
group acts on g and S(g) by automorphisms; It acts on g* by the contragradient operator.
An ideal I of S(g) will be said I"-invariant if I” - I C I. The Poisson ideals of S(g) are
the I"-invariant ideals of S(g). We shall use following Dixmier’s proposition [8, Paragraph
4.2.2.5,p. 155]: Let g be anilpotent Lie algebra, and I a Poisson ideal of $(g). Any non-null
Poisson ideal K of S(g)// satisfies K N C(S(g) /1) # 0.

We shall prove that any Poisson ideal of S(q) is generated by a centralizing sequence.

Theorem 28. Let A be a Poisson algebra. Let us suppose that A is noetherian and satisfies
the property:

(x) for all Poisson ideal J of A, any non-null Poisson ideal of A/J has a non-null
intersection with the center C(A/J) of A/ J.

Then any Poisson ideal of A is generated by a centralizing sequence (x, . ... Xp).

Proof. Let / be a Poisson ideal of A;

If I = 0, I is generated by a centralizing sequence; if / # 0, by the property (x) applied
with J = 0, we have I N C(A) # 0. Hence there exists a non-null central element of 7, x;
Ax| is a Poisson ideal.

If I = Axy, itis proved; if Ax; C I,letusset Ay = A/Ax; and I} = I/Ax,. The
ideal /| is a non-null Poisson ideal of A/Ax|. By virtue of the property (x) applied to
J = Ax; wehave I/Ax;NC(A/Ax;) # 0; therefore there exists x> € I, x> # x| such that
{a. x>} € Axy,foralla € A. The sequence (x3, x) is centralizing in A. If ] = Ax> + Axy,
it is proved; or else Ax; + Ax| C I.

Let us assume that in this way we have found a sequence (x, ), cn such that (xy, ....0 X; )
is centralizing for all i € N and that again we have Ax; + Ax;_ |+ -+ Ax; # I Vi € N,
then we have a strictly increasing sequence Ax| C Ax; + Ax> C --- C Ax, + Ax;—1 +
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.-+ Ax) C ---ofideals in A. But it is impossible, while we have assumed that the algebra
A is noetherian; Therefore 3p € N suchthat I = Ax, +---+ Ax;. O

Corollary 29. Let g be anilpotent Lie algebra. Then any Poissonideal I of S(g) is generated
by a centralizing sequence.

3.1.2. Lifting homomorphism associated to I rational ideal

Following Dixmier [8, paragraph 4.2.6], a Poisson ideal / of the symmetric algebra S(g)
of a nilpotent Lie algebra g is called a rational ideal if C(S(g) / I) = k. According to Vergne
[35] and Arnal et al. [1] or by introduction of Poisson algebra isomorphisms (and not only
commutative algebras) in Nouazé-Gabriel’s results {23, paragraphs 3.2 et 3.3], the fact, that
to be rational for an ideal is equivalent to the existence of p € N such that the Poisson
algebra S(g)/! is isomorphic to W), (k).

Theorem 30. Let g be a nilpotent Lie algebra, 1 a rational Poisson ideal of S(g) and
S(q) = lim ,S(q)/1". Then there exists a lifting homomorphism of Poisson algebras ¢ -

S(q) / 1 —>§(g). The lifting homomorphism @ is unique up to inner Poisson isomorphism.

Proof. We apply the lifting theorem Theorem 17 to A = S(g). From Corollary 29, any
Poisson ideal of S(g) is generated by a centralizing sequence. The uniqueness of the lifting
homomorphism ¢ is asserted by Theorem 19. O

3.1.3. Application to lifting homomorphism from S(q)/I (1) into lim ,S(q)/1" for I (u)

associated ideal to u of g*: regular centralizing sequence generating I (i)

For 1 € g*, we call the set of polynomial functions on g* vanishing on the orbit I" - u
of u the associated ideal to . We denote it 7 (12). We know [8, Paragraph 6.3] that 7 (1) is
invariant rational, S(g)// (1) = W, (k) for some p. Theorem 30 is applied to it.

Pukanszky’s theorem [28] gives a parametrization of the coadjoint orbit through ¢. From
this parametrization, we show that it is easily possible to obtain generators Py, P, ..., P,
of the ideal 7 (). The sequence (Py, P», ..., P,) is aregular centralizing sequence of S(g).

Let us recall Pukanszky’s notations (see [28,29]) concerning the nilpotent Lie algebras
(see [27, p. 426]). Let go = {0} C g1 C g2 C --+ C g = g be a flag of g (dimg; = i)
such that [g, ;] € g;— foralli € {1,...,m} and let (X, ..., X,;) be an adapted basis
called Jordan-Holder, that is that g; = kX & --- @ kX;, foralli € {1, ..., m}. The dual
space g* of the algebra g is provided with the following stratification:

For & € g* we defined the set of indices J, = {1 < j <m : X, ¢ g;—1 + g}, where
gu={xeg:Vyeg,ulx,y) =0L1If J, = {ji < jo < --+ < Jg}, we shall have
=0, DkX; ®---DkXj,.Let A = {J,; u € g*}, fore € A, we define the subset of g*

.Qg={,u€g*;.]#=e}

called stratum. We have g* = U, 4 $2,, disjoint finite union of strata.
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Theorem 31 ([28] Parametrization of the orbit of g*). Let g be a finite-dimensional nilpo-
tent Lie algebra m and I the adjoint group of g. Let (X|, ..., Xn) be a Jordan-Holder
basisof q. Let e = {j) < ja» < --- < ju} and $2, the corresponding stratum.

Then, for all j € {1, ..., m}, there exist functions

R{: 2, x Kk
(e ¥jys oo YiDF—> RO, Vs s Yiy)

such that
(a) for u € $2, fixed, the function

k([ —5k
Ojis s Via) == RE( ¥ Vi)
is a polynomial function of the variables y; , ..., y;,, where h satisfies j, < j <
Jh+1s
(61 15 = iy € e RS G ) = vy, Vit € 2

(c) Yu € $2,, the coadjoint orbit I' - u through w in g* is

—IH
Z Re(“ Yiy» y/}/)X_;f (Vjiseees Yig) € k4
where (X;.*)je“_m,,,} is a dual basis (X;)je(1. _.m)-
For 1 € g*, we give generators of the ideal I (1) of S(q) associated to u.
Proposition 32. With the hypotheses of Theorem 31, let i in g*. Then

LIy =350, (X — R{ (s Xy X)) S(a)
2. the sequence (X; — R;)jgge is centralizing in S(g).

Remark 33. Forj e k € {1,...,d}j = ji, we have the equality X, — R" (e Xjpoonns
X;,) = 0 by virtue of Theorem 31 We see, from the form of the generators P =X;—
R‘ (n, X . Xj,), that the sequence (P;);q. generating the ideal (1) is regular. For

ve.Q G uandP =X —R j € e, we have
dPj(v) € 8, qv =@ dP;(v), g=(Dje.RX;) D gy

(see the following example with ¢ = gs4).

Proof.
(1) Lete = {j| < -- < jy}, £2. be the associated stratum and u € £2,. Let us prove
2 igeXi — Ri(u, Xy, Xj,0)8(8) € I(p). Itis enough to check that (X —
R;(;L. Xjp, ... X)) =0Yo e G-u,Vj ¢ e,thatistosaywj—Re(u Gjrreer i) =

0 denoting ¢(X;) = ¢;. The element ¢ € I - u implies ¢ = ’ - R‘ 070 T
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Yjs) X} for some y € k4, but g;, = RS (p, y) = yj, from the definition of RS (voir
recall), r € {1, ..., d} and therefore ¢; = Rf(u, iy oo or ©jy)
It remains to show that

I(w) C Y (X — RO, Xy X)) S(8).
Jge

Let v € I(u). Letus denote ¢ = {i} < i < --- < i} = {l,....,m} — e,
v(Xi,, ..., Xip, Xj,» ..., Xj,) =9(Xj,, ..., Xj,) considering v as function of the only
variables X,, We apply Taylor s formula to v at the (R;, (i, X, ..., X;,), ..., Ry (u,
Xi, o Xp)).

(2) Letus set P; = X; — R; with j ¢ e (P; = 0 for j € e). We notice that the elements
Py, ..., P; form a basis of I N S(g;) and give the equations of the projection of the
orbit £ = G.u on g*;. Indeed the element R; depends only on the variables X;
with/ < j, I € e. We have I N §(g;) = Zj’fj S(gj)Py. For X € g, the bracket

(P, X} =1{X;, X} - {R" X} only depends on the variables X ;» with j* < j while we

have {g, g;} C g;—| and R‘ € S(g;). Thus we obtain

{Pj, X} € Sg-)NT =Y S@i-1)Py

J'<j
the sequence P, ..., P; is a centralizing sequence of S(g). O

Example 34. Let g = g4; be the nilpotent Lie algebra (see [26, p. 12]) having for basis
(X1, ..., X4) and which the Lie algebra structure is defined by the brackets: [X4, X3] =
X; et (X4, X2l = X1. Lete = {ji < jo) = (2,4} and Q¢ = (216X} &1 # 0) the
corresponding stratum. Let y = Z lu, X! € 2., we have

I(w) = (X1 — 11)S(aa1) + Qi X3 — X3 4+ u3 — 201 143)S(841).

3.1.4. Commutant associated to a lifting homomorphism

Theorem 35. Let g beanilpotent Lie algebra w € g* and I () the Poisson ideal associated

to w. Let us denote ¢ : S(q)/l(u)—>S a ltftmg homomorphism (Theorem 17). Let C be

the commutant of ¢ (S(g)/1(w)) in S Letm =TNC. Then

(i) The Poisson algebra C is a local ring with residue field k, separated completely for the
m-adic topology, m being the maximal ideal

(i) C is isomorphic as an associative commutative unitary algebra to the formal power
series algebra k[[ Xy, ..., X,]], the integer r is the length of a regular centralizing
sequence generating 1 (1), it is as well the codimension of the orbit through [i.

Proof. We apply Theorem 23 to A = S(g), /(1) generated by a regular centralizing
sequence from Proposition 32.
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3.1.5. Examples of lifting homomorphism of S(g)/I into lim,, S(q)/1" (1) and associated
commutant o

We show lifting examples.

In Example 36, we shall notice that the form of the formal lifting maps corresponds either
to rational functions or to algebraic functions. In Example 37, we compare our results with
those of Fokko du Cloux [11, pp. 198-199], and there is a strong similarity between the
formulae giving the lifting homomorphism and the commutant in the respective spaces S/(E)
and U/EE). Only the graded algebras of the commutants in their maximal ideals are given
by different formulae.

Example 36. We consider the nilpotent Lie algebra gs4 [22,26], with basis (X, .... Xs)

and which the non-null brackets [X;, X;1,i > j,are given by: [Xs, X4] = X311 [X5. X3] =

Xo: [X4, X3] = X . The dual basis of g, is (X}, X3..... X3). We give alifting homomor-

phism at a point £ in every stratum denoted by £2|. 2>, £23, £25. Let 7 : S(q)—> S(q)//(£)

be the canonical projection.

— We choose in ;1;‘4 at the point § € 2| = {£ = Y ¢ X7:& # 0}. The Poisson-Weyl
algebra is S(g)/1(&§) = W (k) = k{p,q] where p = n(Sf'XJ,) and ¢ = 7(X3). The
lifting homomorphism of Poisson algebras, ¢ : S(g)/[(é)r—fs\', is given by ¢(p) =
XsX7!and g(g) = Xs, where X! is the element 33" (— )" (X, — &))" /(&))"
of S.

This formal lifting map comes from rational functions, it is in accordance with Vergne's
theorem [35, p. 327], the stratum $2| is the Zariski open set of this theorem, we have
{X4. X3} = X1, X is the central element.

The commutant C = C(W,(R). §) has for maximal ideal m generated by u . u>, u3,
where 1y = X, — pt), u> = X> and uz = X, Xs + X7 = 2X2X9)27'X;" and X'
is the element 3/=0°(—1)"(X| — £))"/(£1)"*" of S. The commutant is the algebra
C = k[[u,. us, us]], trivial Poisson algebra.

— We choose in gf, apoint§ € 2, ={§ =) &X' : £ =0.6 #0}.

The Poisson—Weyl algebra is S(q)/[(&§) = Wi (k) = k[p. q] where p = n(ET'Xs)
andq = m(X3) = X3.The llftmg homomorphism ofP01ss0n algebras¢ : S(g)/ 1 (&)—
S. is given by @(p) = XsXy "and ¢(q) = X3, where X5 ' is the element Y/ =0(—1)"
(Xs — &) /(gD of s. Again this formal ltftmg map comes from rational
functions.

The commutant C = C(W(R), §))hasf0rmaximal elementmﬂeneratedbyu] Us>, u3
where u; = X, u>» = X» — p» and u3 = (X— +2X1X5 —2X>X4)2” X_ X"l is
the element Zzzgo(—l)h(Xv £2)" /(£2)" ! de S. The commutant is the algebra C =
k[[u |, ua. us]l, trivial Poisson algebra.

— We choose in g%, apoint§ € 23 = {§ = Y EXFE =0,6=0& #0}.

The Poisson—Weyl algebra is S(g)/[(§) = W (k) = k[p. gq] where p = n(g;' Xs) anAd
q = m(X4) = Xa. The lifting homomorphism of Poisson algebras ¢ : S(g)//(§)—S.
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is given by ¢ (p) = 2Xs/(X3 + ,/X% +2X1X5) et ¢(g) = X4. The element ¢(p) is

Xs » n=o00 /1:3:5---2n=3) R
- =X X —1 n+ ZIIX}IXn X 2n+
(p(n(és)) 43 +nz_;( ) 2.4-6---2n s&) A3

of S, with X' the following element of §: Y/ =0°(—1)" (X3 — £3)" /(&3)"* .

This formal lifting comes from algebraic functions, it seems impossible to find a lifting
homomorphism formed of rational functions.

The commutant C = C(W(R), §) has for maximal ideal m generated by u,, u2, us,

where u) = Xy, up = Xpetuz = ‘/X§+2X|X5 — u3, uz is the element

k=00
X3 —u3 -i-X|X5X3_l +
k=

(=DF1 3.5 ... 2k —3)
2.4.6.--2%

kyky—2k+1yk
2k xkx 7+ xh

o

in S. The commutant is the algebra C = k[[uy, ua, u3]], trivial Poisson algebra.

Let us recall Pedersen’s theorem [25, p. 547] expressed in algebraic terms: Let £2, be
a stratum of ¢* and & € £2,, Pedersen describes a homomorphism of associative algebras
8 : 5(g)/I(§)—> S(a) ), such that the following diagram be commutative:

S(Wre —L— Frac(S(e)/1(6))
Ut

S(@)/1(&)

where i is the canonical injective map of S(g)/I(£) in its fractions field and S(q) ;) is
the localization of S(g) at 7(§). The map p : 5(@);&)—> S(@) 1) /1 (6)S(a)1) is the
canonical projection, and we use the isomorphism S(g);)/I(§)S(g);) = Frac(S(g)/
1(§)).

In the above example, Pedersen’s calculus leads to a homomorphism of Poisson alge-
bras on the strata §2; and §2,. On the stratum £23, Pedersen’s homomorphism defined by
0(X5E3_') = Xs5/X3 and 8(X4) = X4 is not a Poisson homomorphism since we have
{Xs5/X3, Xa} = 1+ X, X3 Xs.

Example 37 (Comparison of lifting maps in SandinU ). Letus consider the nilpotent Lie
algebra gs3 withbasis (X1, ..., Xs) (see [26, p. 20]). The brackets of gs3 satisfy [ X5, X4] =
X2, [Xs, X2]1 = X1, [Xa, X3] = X,. With the notations of Section 3.1.4, fore = {j| <
J2} = {4, 5}, the corresponding stratum is 2, = {§ = ij i X! & =0,8 # 0}. Letus
fix an element u € £2,.. Then we have,

— Theorbitof u, I' - p: I' - o = {2 X3 + ua X% + ya X3 + y:Xs(y4, ys) € k?).

— The invariant rational ideal associated to p : I (1) = X15(gs3) + (X2 — 142)S(gs3) +

(X3 — 13)5(as3).
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— Therational ideal J of U associatedtothe orbit I"-p: J = XU (g53) +(X>—u2)U(qs3)+
(X3 = ux)U(gs3). L
— A lifting homomorphism ¢ : S(as3)/I (n)—> S = lim,,S(gs3)/1" (1) given by @(Xs/
12)=XsX, "' and p(X4) = X4 with X; ' theelement X5 = Y 4=0%(—1)¥ (X5 — ua)*/
k—+1 - -
My
— Alifting homomorphism ¢ : U(gs3)/J—>U = lim ,U(gs3)/J" given by du Cloux and

defined by ¢>(7§/,u2) = X5X2_13.Ild ¢(X_4) = X4.
— The commutant C = C(W;(R), §) with maximal ideal m generated by u |, u2, u:
m = (u1, Uz, u3)s, where

uy = Xy, un =,/X§‘—2X1X4—,u2 and u3 =X|X5X2_I + X3,

where 5 is the element X» — 1> — X X4 X5 ' — Y 42°(135 -+ (2k — 3)/246 --- 2k)
2xEx7H Xk de S,
— The commutant D = C(A(R), ﬁ)) with maximal ideal n generated by v, v, va:
n = (vy, va, v where

up =X, v2=1/X3-2X\Xs— > and vi=X1XsX;' + X3,

where v» is the element X> — > — X X4X2_l —ij@(l 35 (2k—3)/246 - 2k)2k
X4x; ¥ XK de U
— The commutant in $ is the formal power series C = k[[u1, u2, u3]], Poisson algebra
with the law {u3, 1o} = u3(uz + p2)~ .
— The commutant in U is the algebra of non-commutative formal power series D =
k[[vy, v2, v3]], which law algebra is given by [v3, v2] = vf(’vg + unl
The respective commutant formulae are identical, this leads to conjecture that the
associative algebra D is a quantization of the Poisson algebra C.
— The m-adic graded algebra of C is the polynomial algebra Gr,,,C = k[t1. 12, 3] endowed
with the trivial Poisson.
— The n-adic graded algebra of D calculated by du Cloux is the algebra Gr, D = k[t). 1>, 3]
described by [13, 2] = t§ /2.
The formulae of the respective graded algebras differ.

3.2. Geometric study: commutant and transverse structure

Let g be a real finite-dimensional nilpotent algebra. The dual space g* is a Poisson
manifold endowed with its Lie—Poisson structure. The goal of this section is to compare the
formal Poisson algebra transverse to a symplectic leaf, algebra obtained by Taylor series
expansion of the transverse algebra of Weinstein’s splitting theorem, with the commutant
@S(a)/I(w)) in §, where ¢ is a lifting homomorphism of S(g) into § and u is a point of
the considered leaf.
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3.2.1. Transverse Poisson structure

The structure of Poisson manifold has been defined and studied by Lichnerowicz [19].
The local structure of a Poisson manifold has been specified by Weinstein [36] in Weinstein’s
splitting theorem. Let us recall the definition:

Let M be a smooth manifold This manifold M will be called Poisson manifold if the
algebra of infinitely differentiable functions C°°(M) is endowed with a Poisson algebra
structure. There exists on M a unique two times contravariant skew-symmetric tensor field,
infinitely differentiable denoted by A such thatfor fand gin C>* (M) : {f. g} = A(df, dg).
The tensor field A is called the Poisson tensor field of the Poisson manifold M. A Poisson
manifold will be denoted (M, A). The map A* : T*M-—>TM such that for all x in M,
a, Bin T)M we have (Afx)(a), B) = Ay («, B), is a morphism of the cotangent bundle
into the tangent bundle, (-, -} being the duality between 7" M and T M.

Let M be a Poisson manifold. Let N be an immersed submanifold of M. Let us assume
that N is endowed with a Poisson manifold structure. The submanifold N will be called
Poisson submanifold of the Poisson manifold M if the injection i : N— M is a Poisson
morphism.

Weinstein has proved [36] the following:

Theorem 38. For x € N, let TN+ = {¢ € T!M :Yu € TcN ¢(u) = 0}. We assume
that: (i) Yx € N, A% () (TNY) N TN = {0); (i) Vx € N, TN+ N Ker A;,(x) =
{0}. Then N is endowed with the Poisson structure (N, An) such that the vector bundles
morphism Ay, : T*N—>TN is

A?\l:nOAi/IOT[*’

where for x in N, the map wy © T.M—>TN is the map associated to the decomposition
M =T,Nd Ay, (xX)(TeN1). This structure is called the Poisson structure on N induced
by M. The induced Poisson bracket is for f, g € C*(N): {f, gln = Ap(dfom, dgom).

Let (M, A) be a Poisson manifold, the set D = AF(T*M), image of the cotangent bundle
by the bundle morphism AF, defines a ¢ distribution on the manifold M in Sussmann’s
terminology [32]. For all point y in M, there exists a unique immersed connected submani-
fold S of M, maximal for inclusion, y in S, such that for all x of S we have T, § = AE- (TIM).
The manifold S is called the symplectic leaf through y in M. It is obvious that every leaf §
is a Poisson submanifold.

Let us recall the definition of the transverse structure to a symplectic leaf for a Poisson
manifold. Let (M, A) be a Poisson manifold. Let S be a symplectic leaf M, xo € S and
N a submanifold of M, with dimension the codimension of S in M, going through x( and
transverse to S at xg : Ty,M = T, S @ Ty, N. There exists a neighborhood U of x( in N
such that, for all x in U, we have M = A=((T,N)1) + T.N. By virtue of Theorem 38
and its remark, we can endow U C N with the Poisson structure induced by M. It has been
proved by Weinstein [36] (see also [6, Theorem 6.2]):

Let xp and x| be two points of the symplectic leaf S and two submanifolds Ny and N,
such that xo € Ny, x; € Ny, and
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we provide Ny et N{ with the Poisson structures induced by M, then there exists an iso-
morphism of Poisson manifolds from a neighborhood of x in Ny onto a neighborhood of
x1 in Ny which maps x¢ on x. The notion of Poisson manifolds isomorphism defines an
equivalence relation on the set of Poisson manifolds. We have the following definition.

Definition 39. Let M be a Poisson manifold, S a symplectic leaf and xy € S. Let N be a
submanifold of M through xq and transverse to S at x, the equivalence class of the germ at
xq of the Poisson structure induced on N by M will be called transverse Poisson structure
to the leaf S.

Let us recall Dirac’s constraints formula. Let (M, A) be a Poisson manifold and N an
immersed submanifold satisfying the conditions of Theorem 38, then N is provided with the
Poisson structure induced by that of M. The formula by Dirac (7] has given a relationship
between the bracket on N and the bracket on M.

Theorem 40 (Dirac’s bracket formula). Let M be a Poisson manifold. Let N be a subman-
ifold satisfyving the conditions (1) et (i1) of Theorem 38. Let xy be in M. We choose U open
setof M, xy € U and functions x* such that we have

NOU={yeU:x'()=x"() = =" =0},
such that the matrix

{x. xP Y01, a, Befl,.... 2k
be invertible forall y € NNU. We denote fory e NNU. a,Be{l,....2k)CP(y) =
{x“, xﬂ}(y): Let C,,,, be such that fora, y € {1, ....2k} szl‘ C(,ﬁ(y)CﬁV()') = 8(; Let

us denote i : N—> M the canonical injection.
Then the relation between the Poisson structure induced on N and that of M is given by
a.f=2k
(foirgoiln=(figlu— ) (fxIuMCapMx", ghu(y)
a.f=1
forall f,g e C*(M)a,y €{l,.... 2k).

Proof. See [2,31]. O

3.2.2. Comparison of the commutant with the formal transverse Poisson algebra deduced
[from Weinstein’s theorem

We recall Weinstein’s fundamental splitting theorem [36] given in its version C™. It
allows us to calculate the transverse structure to a symplectic leaf of a Poisson manifold
(see Definition 39).

Theorem 41 (Weinstein’s theorem (version C>°)). Let M be a Poisson manifold, dim M =
n. Let xo € M. We assume that the rank of A at xq is 2r.
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Then,

1. There exists achart (U, ¢, R") of M at xg, called a Weinstein chart at xo, such that the as-
sociated coordinate maps (D1, ..., PrsqQls s GQrs 20y -y Zn-2r) Jori, j € {1,...,r},
a,Bell,...,n—2r}satisfy:

{pi, pi} =0 {gi.q;} =0 {pi,gj} = 8;; (Kroenecker delta),
(*) {Pi’Za}=0 {‘IisZoz}=09

{za, Z,s}(xo) =0.

The brackets {74, zg} are only dependent on the 71, ..., 2y_2,.

2. There exists an open set U including xp which is identified by a Poisson isomorphism to
a product V. x W, V open set of R?" endowed with the canonical symplectic structure,
W open set of R"™>" endowed with a structure of Poisson manifold which the rank of
the associated tensor is null at the projection point of xo on W. The factors V and W
are unique up to local Poisson isomorphism.

If N is the manifold transverse to the leaf through xo, we have with ¢,y = (po. g0, z0)
NNU={xeU:p=poq=qo)

for all ¢, ¥ € C*(N).
The Poisson algebra transverse to the leaf through xg, C*°(N), is provided with the
bracket

ap Y
ViD= Y |zl
l<a.f<n—2r Ca 02p
The algebra C°°(N) is isomorphic to Weinstein’s commutant of the p and g in C®(M).
For examples in dimension six, we must consult [31, pp. 91-92].

Example 42. We still consider the nilpotent Lie algebra g = gs 3 [22,26].
In these coordinates, the Poisson bracketis forall f, g € C®(R%) {f, g} = —x2A4.5( 18—
x1425(f, 8) —x1A3.4(f, 8), with A; ;(f, g) = (3f /0x;)(3g/0x;) — (3f/3x;)(3g/dx;).
First case. u = Zﬁz? u; X* avec uy # 0. A Weinstein chart, defined on an open set U
including u, is (p1, 1, p2, 92, 21):
_ xilas — ps) + (2 — po)(x3 — p43) X4 — p4
P = > » g1 =X — M2, p2= )
x; X
q2=Xx3 — U3, I =X]|.

Second case. u = ij ui X} avec ;1 = Oet s # 0. A Weinstein chart (py, q1, 21, 22,
z3) defined on an open set U including u, is

(x5 —us)
X2 ’

PL=X4 — 4, q1 =
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(x5 — us)
=

=0/x3 =20 (xs — pa) —p2, =X +x3 — ua.

Computation of the brackets {z;, z;}i jeq1.....3): the element z; being central, we must
only calculate {z7, z3}:
2 22

2
. . {z2. 23 = Tt
\/xg“ — 2x)(x4 — [q) T

{:2.3l=—

The submanifold N transverse to the leaf through w is: NN U = {x € ¢*:p)(x) =
0,g1(x) = 0}.

In the coordinates (z;, 72, z3) we have: ¢, ¢ € C™(N) {lo. bz o0y = —(;f/:g
+u2) A2 3(0, @).

Theorem 43 (Weinstein’s formal theorem). Let F be an algebra of formal power series

over k in n indeterminates and m the maximal ideal of F. Let us assume that F is a Poisson

algebra. Then,

1. There exists an n-coordinate system (Pi, ..., Proqls---rQrZls .-\ n-2r) formed of
elements of m, called a Weinstein formal systemwithi. j € {1, ..., r},a, B € {l..... n—
2r}, such that:

F~k[lp1,....P 915+ qr 21, .-, Zn=2r]] where
{pi.Pj}=0 {gi,q;}=0 {pi,qj} =3

{Pi,za} =0 {gi,2a}=0

{Za. 28} € m.

The brackets {zq, zg} belong to k[[z]].
2. The formal transverse Poisson algebra k[[Z]] endowed with the brackets

d
t= Y et 2wy ek

024 328~
Il<a.B<n-2r “o 9Cp

is unique up to isomorphism of Poisson algebras.

Proof. We repeat mutatis mutandis the proof of thes C> version of the theorem. To show
the uniqueness, in the case where k = R which will interest us further, we can use also
Borel’s theorem [34] which asserts that the map

7 CR"Y — R[[X;,..., X,]1]

associating to every function its Taylor’s series is surjective. Then we use Weinstein’s
previous theorem in version C*°. O

Weinstein’s theorem has allowed us to calculate the transverse Poisson algebra at a point
of g*, algebra isomorphic to the Weinstein commutant at ;. We expect the algebra obtained
by Taylor’s series expansion of Weinstein’s commmutant to be isomorphic to our commutant
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computed in S/(E) In fact, we have computed the commutant in §by successive approxi-
mations, The Weinstein commutant is worked out by resolution of differential equations.
To compare the commutant obtained in S/('g\) and the algebra obtained by expansion of the
Weinstein commutant in formal power series, we will immerse these two algebras into a
formal power series algebra.

Still we use the Pukanszky and Pedersen’s notations (see Section 3.1.3). Let {0} = go €
a1 C g2 C -+ C g = g be a flag of the Lie R-algebra.

g satisfying [g, a;] < g;—; foralli € {l,...,m} and let (X, ..., X,;) be an adapted
basis to the flag, g; = RX; & --- @& RX;. Let £2 be an orbit of g* and . € £2, then
belongs to a stratum £2, for some e = {ji < --- < jy} with d = dim £2. Let us set
e=1{l,...,m}—e = {i; < - - < ip}. We know that with the notations and results of
Proposition 32, the associated ideal to . is

{=h

Iw) =Y (Xi = RS (i, Xy, X -, X, ))S(@),
=1

with jo < i} < jy41. Letusset T;, = X;, —u;, k € {l,....kletU, = X;, —
R (p, Xjy, Xjpy .o, Xj), L e {l, ..., h}. Then we have
S=R(T)..... T, Ui ... Uyl

We notice that an element of S/(E) is a formal power series with polynomial coefficients of
R[T].
Let us consider the Poisson manifold (g*, A), the rank of A is d at u.
There exists a chart
¢:U—R" atp,
X > (Pl,--wpryql,---,qr,Z]’--th),

where U is an open set of g%, 2r + h = m, ¢ a Weinstein chart. Denote x; = f(Xy), k €
{1,...,n} for some f of g*, we have

Pi=pi(Xiy, oo, Xiy, Xjys oo X)) € C(U),
pi=Dpi(xiy, ..., x,)

considered only as function of (x;,). We proceed to a Taylor expansion p; at the point

R = (Ry(u, xj, ... x;)ell, ...k}
We have
~ - 0% pi - o
BB =hR+Y S (RE =R,
where
F=xi, ..., %, a=(a,...,0p) eN, 5 =xq',...,xg”,

al=ail---apl, ol =)+ +ap.
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Next, 9% P; /0x“(R) is a a function of (x;,....x;,). We cannot assert that the 3* P;/
X“(R) are polynomial in the variables Xj,....xj,. Then we develop 9% P; /0x“(R) at
(&j,. ..., uj,). Finally, we obtain an association to p; an element denoted p; by the sub-
stitution of the indeterminates X; for the coordinates x;. We do not know if this element p;
isin S =R[T),..... T, Ui, ..., U;, 11, but we have

pi € RIT;..... T, MU, .... U, 11 =RI(T. U]

Similarly, we obtain an association to ¢; and z; the elements g; and z; of R[[T, U]], for
i,je{l,....n}, 1 € {1,..., h}, which satisfy the relations (x) of Weinstein’s splitting
theorem. The algebra R[[Z7. ..., 2111 is the algebra obtained by expansion of Weinstein's
commutant in formal power series, we denote it by Cy .

Thus the commutants C and Cw are included in the same algebra formal power series
RI[[T. U]]. which permits us to compare them.

Theorem 44. Let g be a finite-dimensional R-nilpotent Lie algebra. Let i € q* and I (1) be
the rational Poisson ideal associated to . Let ¢ : S(q)/1 (u)—>§ = 131_1 aS(Q)/ 17 () be a
lifting homomorphism of Poisson algebras. Let (p;. q;, 2o) be a Weinstein chart of Poisson
algebras at p and let Cw the formal transverse algebra to the leaf through u obtained by
expansion in formal series of the Weinstein commutant. Then we have a Poisson algebras
isomorphism between the algebra Cw and the commutant ¢(S(g)/I(w)) in S

Cw ~ Cl(S@/T(). ).

Proof. Let q = ZET RX;. The element i of g* belongs to some stratum §2, for some
e =1{j| < -+ < jg},dbeing the dimension of the orbit through . Lete = {1. .. .. ml—e =
{iy <--- < ip}. We know that the associated ideal to u is
I=h
Iy = 1Xi, = RS, Xy Xy X)) S(q).
=1

with j, < i} < joy1. Letussay Tj, = Xj —uj. ke{l,...,ktand U;, = X, —
Ri (1. Xj,. Xj:;- ... X;,), L € {1,..., h}. The choice of a lifting homomorphism ¢ pro-
vide elements S, (a;.bj,¢). i.j e l,....d,a € 1..... m — 2r, satisfying Weinstein's
relations. We have

S=RIT,..... T, Ui, ... Uy, 1l C RIT. U1l

the elements a;, b;, ¢, which form a Weinstein’s formal system of the algebra of formal
series R[[T, U]] (see Theorem 43 (Weinstein’s formal theorem)). We have

Rlla, b, c]l = RI[T,U]] and C =R[[c]].

Let (p;,qj.z«) be a Weinstein chart at  and the elements (p;. g;, Zo) of R[[T. U1l
associated by expansion in Taylor series as above. These elements form a Weinstein formal
system of the algebra R[[T, U]]. We have

RI[p.g. 21 >~ RIT.UN] et Cw = R[]



188 M. Saint-Germain/Journal of Geometry and Physics 31 (1999) 153194

By uniqueness of the formal transverse Poisson algebra in Weinstein’s formal theorem
(Theorem 43), the formal transverse Poisson algebras R[[c]] and R[[Z]] are isomorphic.
Thus the commutant C and the formal transverse algebra to the leaf through p, Cw, are
isomorphic. O

We have the immediate following consequence.

Corollary 45. With the hypothesis of Theorem 44, let . € g* and I(u) be the Poisson
ideal associated to . Let ¢ : S(g)/l(p,)—»fS'\be a lifting theorem (Theorem 17). Let C be
the commutant of ¢(S(g)/1(w)) in s

If u belongs to an orbit of maximal dimension, the corresponding commutant C is a
trivial Poisson algebra of formal series with dimension the codimension of the orbit.

Example 46 (cf. [31]). We will find the commutant C from algebraic methods in
Section 3.1.5. Weinstein’s theorem allows us to find the commutant generators directly.

3.2.3. Application of Dirac’s formula to g*

Using Dirac’s bracket formula of Theorem 40, We are going to clarify the transverse
Poisson structure. With the aid of the isomorphism given in Theorem 44, this formula
calculates with ease the commutant C associated to a lifting homomorphism when we
compare to the algebraic method of successive lifting homomorphisms. We will even have
a computation algorithm. Let g be a Lie R-algebra, hence we apply Dirac’s formula to the
manifold g*, endowed with its Lie-Poisson structure which the Poisson tensor field A is
such that

Al g— g%, pegt et ARG =u(lx, D).

The characteristic space at u, Im Afl is gt, gt being the annihilator of the stabilizer g,
at u in g*. Thus, the characteristic space to the symplectic leaf through u, this one being
denoted £2,,, is gt. Let m be acomplement of g, in g. From the decompositiong = g, &m,
we have g* = g; & m™, id est

T[l.g* = T[LQ;L 85} Tu(ﬂ + mL).

Therefore the manifolds x4 + m~ and £2,, are transverse submanifolds at u.

Theorem 47. Let g be a finite-dimensional Lie R-algebra. Let §2 a symplectic in g*. Let
i € 82, m be acomplement of g, in g, (Z1, ..., Z;) a basis of g, and (Xi41, ..., Xn) a
basisofm. Let N = u+m=, be the transverse submanifold at i to the leaf and endowed with
the Poisson structure induced by that of g*. We choose (z1, ..., zx) as a local coordinate
system of N with z; = @(Z;), ¢ € u+m=*. Then, expressed in the local coordinate system
chosen for N, the component of the tensor Ay of the induced Poisson structure are rational
fractions

Ang, ={zi v € R, . z), G je{l, .. k).
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Proof. Let o : ¢*—>R" be the system of linear coordinates such that for ¢ in g*:

0(‘(’) = ((p(Zl)y veey (p(Zl\)7 (p(X]\'-‘rl)! ] (p(XII)) = (Z.l- PN OO E0 NP xn)~

We notice that the choice of the basis to express the coordinates is dictated by the fact that
for all ¢ of the submanifold i + m™ transverse to the leaf through y, we have

(X)) =w;. ielk+1,n}

Let U be an open set in * and let N = u + m~ be the transverse submanifold to the leaf
atpu = (..., Iy), we have

NNU={peclU, xpr1=4it1s---, Xy = Mnl.

The map  : N N U— R such that

G(N@(Z)), ..., 0(Z) = (1. .... k)
is a chart of N. From Dirac’s formula, we have for ¢ €¢ U NN, i,j € {I,.... k},
a,B € {k+ L, ..., n} using Einstein’s convention (z;, zZj}unn(®) = {(z;i. Zj}< (@) —

(i xa b (w)C”ﬂ(w){xﬂ, ZiH ), where if C(p) is the matrix [{xq, xp}y-(9)], then
c! (p) = [C“ﬂ((p)] is the inverse matrix. We have {z;, z;}+ (@) = ¢([Z;, Z;]) = afjw(Z;)
where the (af.j) are the constants of structure of g, and /, 7, j belong to {1, k}. We see that
{zi, 2jlee () = abm is a linear expression of z. Similarly {z;, x4 }(¢) = al,z/ +al, u is
an affine expression of z. It is remaining to verify C* (). We have the equalities Coplp) =
{xe» xpH(9) = @([Xa, Xg]) = alyyz/ + alypty. The matrix C~'(p) = [C*F (p)] being the
inverse matrix C(¢) = [Cyp(p)], the coefficients C @B () are rational fractionsinz,. . ... 2.
It is hence clear that {z', z/} belongs to R(z(, ..., zx). O

Practical calculus. For o in N = pu + m~, we define the matrix

8 m
o] @ | (x_})w) —[A(")) 5@
o ot “ LD Cl
’”I K. 2 M) {xar x5}(@) Y

such that D = —'B.
Expressed in the coordinates (z;), the matrix of the tensor Ay of the Poisson structure
induced on N by g* is

AN(@) = A(p) — B(9)C ' (@)D(9).

This formula provides an algorithm calculating the transverse structure, using Pedersen’s
computations. It is sufficient to calculate the stabilizer.

Example 48. Let g53 = Zij RX; (see [26, p. 20]) be the Lie algebra with non-null
brackets [X;, X;1,i > j, [X5, X4] = X2, [X5, X2] = X4, [X4, X3] = X!. We cglculate
the transverse structure at a point y of the stratum 2, defined by £2, = {Z;j X" E =
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0,& # 0}, with e = {j; < j»} = (4, 5}. The stabilizer of u being q, = RX| & RX,> &
RX3, we choose a complement m of g, in gs3, m = RX4 @ RX5. We choose the linear
coordinates o : g*s3—> R’ such that for ¢ in g*53 we have o (¢) = (p(X1), .... ¢(Xs5)) =
(z1, 22, 23, X4, X5). Let N be the submanifold transverse through « and U open set including
u,wehave NNU = {p € U; x4 = pg, x5 = us} with u = Z;ju,-X"*. An element of
i+ m+ has for coordinates (z1, 2o + 12, 23 + 43, i4, 4s). The tensor Ay induced on N by
a* 53, expressed in the linear coordinates, is Ay (@) = A(p) + B((p)C'“B(go) where A(p)
is the matrix [{z;, z;}(p)], i, j € {1, 2, 3}, B(p) is the matrix [{z;, xo}(¢)], i € {1,2,3} et
o € {4, 5} and where the matrix C ™! (@) is such that C(¢) = [{x4, xg}(@)], @, B € {4, 5}.
We find

0 0 0
An(z1,22,23)=| O 0 2} /(22 + p2)
0 z7/(z2+ u2) 0

The structure is defined by the bracket {z3, 22}y = zf/(m + ) € R(zy, 22, 73).

3.2.4. Comparison of the commutant m-adic graded algebra with the symmetric algebra
S(g,.) of the stabilizer at an orbit point

Theorem 49. Let q be a nilpotent Lie R-algebra. Let u € g* and 1(11) the Poisson ideal

associated to . Let ¢ : S(g)/l(u)—>§ be a lifting homomorphism (Theorem 17). Let C

be the commutant of (S(q)/I(1)) in S and TN C its maximal ideal denoted by m. Then

1. the symmetric Poisson algebra of q,, is isomorphic to the m-adic graded algebra of C:
Gr,,C ~ S(a.);

2. we have the isomorphism of Poisson algebras Gry,,S(a) =~ S(8)/1 (1) ® S(gu).

Proof. (1) According to Theorem 44 we can assert that the commutant C is isomorphic to
the formal Poisson algebra Cw transverse to the leaf through u get by the formal power
series expansion of Weinstein commutant. We can calculate Cy with the aid of Dirac’s
formula. Using this last ease (see Theorem 47), we choose a complement # de g, in g*,

a basis (Zy, ..., Z;) of g, a basis (Xg41,...,X,) of h and (24, ..., 2k, Xkg1s ooy Xy)
the associated linear coordinates. We have, for ¢ € u + ht, i,jef{l,....k},a,B €
{k+1,...,n} using Einstein’s convention

{20 2 bt (@) = {20y 2} (@) — {20, Xa ) (@) C (0) x5, 2} (@),

where if C(¢) is the matrix [{xq, xg}4+(¢)], then C~(¢) = [C*(p)] is the inverse matrix.
We know that the {z;, z;},, ;1 are rational fractions, thus we shall have

Cw =kllzy, ..., zll

Poisson algebra with maximal ideal myw = (z1, ..., zx) and with the brackets {z;, Zilow
given by Taylor’s expansion of the above formula. If we have the inclusion [g,,, k] C &,
then

{zi, Zitew = {zi, Zj}em,,
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or else
{zivzilew = {zis gk, + Sije

where S;; is a formal power series in the z; with valuation v(S;;) such that v(S;;) > 2. The
m-adic graded algebra Gr,,,,, Cw is generated as Gro(Cw)-algebraby Gr; (Cw) = mw/ m%\
We have Gr,,,\\,g‘w = k[z| + m%v, 7+ m%v, oo+ m%v] with {z; + m%V 3+ m%v} =
{zi. :_;}ﬂx“ + my,. Thus we obtain Gr,,,, Cw > S(g,,). From the isomorphism Gr,,, Cw >
Gr,,, C, we obtain Gr,,C = S(g,,). (2) Follows from Theorem 27. O

Example 50. Let g5, = Zfi?[RiXi be the nilpotent Lie algebra (see [26, p. 59]) with
non-null brackets [X;, X;],i > J, [Xe, X5s] = X3, [X6, X3] = X, [Xe. X3] = X,
[X5,X4] = X2, [X4, X3] = —X. Let e = {5, 6} and let 1 be the point of the stratum
2. defined by 2, = {Y/=06 X" 6 = 0,& = 0,& # 0. The stabilizer of 1« be-
ing g, = RX| & RX, & RX3 & RX,4, we choose m a complement of Gy in gg7, M =
RX5 & RXg. We choose the linear coordinates o : gg7——>R5 such that for ¢ in g¢, we
have o (¢) = (@(X1), ..., 9(Xg)) = (21,22, 23, 24, X5, Xe). An element of u + m* has
for coordinates (zy, 22, 23 + (3, 24 + 44, s, te). By virtue of Dirac’s brackets formula,
we obtain, expressed in the linear coordinates, the tensor Ay induces on N (see Example
48). Thus the transverse structure is defined by {z4, 22}y = (2122/23 + u3) et {2y, I3ly =
-2+ (:% /23 + u3). The m-adic graded algebra of the commutant C is the polynomial al-
gebrak[zy, 22, 23, z4], endowed with the Poisson structure defined by the non-null brackets
{z3. 24} = z/. The algebra S(g, ) is the polynomial algebra k[X|, X2, X3, X4] endowed
with the Poisson structure defined by the non-null brackets {X3, X4} = X|. We verify
that

Gr,, C =~ S(Q;L)-

3.2.5. Quantization example

Let g be a finite-dimensional nilpotent Lie algebra, U(qg) its enveloping algebra and J
a rational ideal on k. The algebra U(g)/J an Weyl algebra. In Section II of [11], Fokko
du Cloux has shown that there exists a homomorphism of unitary associative algebras
¢ U/ J— 1<i£1,,U(g)/J" = ﬁ(\g) such that f] o ¢ = Idy,;, where f) : ﬁ——»U/J
is the canonical projection. We shall denote by D the commutant associated to this lifting
homomorphism,

D={uel:[¢p@,ul=0 YaelU/J}

where the bracket is defined [a, b] = ab — ba for a, b in U.

Fokko du Cloux has dealt in detail the case of the Lie algebra g53 [11, pp. 196-199]. We
have seen in the above example that the lifting homomorphim formulae from U (gs3)/J
into U are identical to the lifting formulae from S(gs3)/I into S, the ideals 7 and J being
in correspondence with the help of Dixmier’s map [8, 6.3.3, p. 195]. For the commutants
Din U and C in S, the formulae gave the generators of the respective maximal ideals are
also stricly the same.
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Let us consider this similarity in more details. In the algebra U ,for J = (X, X2 —
U2, X3— u3), the commutant is the non-commutative formal power series algebra k[[z, 22,
z3]] such that z; §central and [z3, z2] = Z%(zz + )L

In the algebra S, for I = (X, X2 — 12, X3 — p3), the commutant is the formal power
series algebra k[[z}, z2, z3]] such that z; is central and {z3, 22} = z%(zz +12)~". We notice
that in U we have [z3(z2 + 12),22] = z%. If we set Set z; = z3(z2 + u2), we get the
isomorphism k[[z1, 22, 231} = k[[z1, 22, 23]] with

2
[z3, 2] = zf.

The same holds in S, we have {z3(z2 + p2), 22} = zf. Settling z3 = z3(z2 + p2), we get
the isomorphism k[[z1, z2, 2311 = k[[z1, z2, 25]] with

2
{23, 22} = z7.

Let %, k[{z1, 22, 1’3]] be the algebras such that z;is central and [2'3, 2] = tz%. Then A,
is a deformation (see [10] for a precise definition) of %y = k[[z], z2, z’3]], Poisson algebra
endowed with the bracket

(2}, 22} = z7.

In this example, the associative algebra D is a quantization of the Poisson algebra C. In
the general case we can conjecture: “Fokko du Cloux’s is a quantization of the transverse
structure”. The comparison of the commutant D and C is not easy. The symmetrization
w : S—> U does not map the ideal 7 on the ideal J although we can find generators of /
such their images by w generate J (voir [14]).

Noticing the similarity between the formulas which give the commutants, we are tempted
to use Dirac’s formula to the search of the commutant D in U. The obstruction is to define
the inverse matrix which appears in Dirac’s formula.
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