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Abstract 

Let g be a finite-dimensional nilpotent Lie algebra over an arbitrary field of characteristic zero. 
We study the transverse Poisson structure to a symplectic leaf of the dual space g*, endowed with its 
canonical Poisson structure. We use two methods for this study, one is purely algebraic, the other is 
geometric. We prove that the transverse structure is a Poisson structure over the formal power series 
algebra in d indeterminates k[Xt  . . . . .  Xd], where d is the codimension of the symplectic leaf in 
g*. We show a strong similarity between this Poisson structure and the associative algebra structure 
over this formal power series algebra introduced by Fokko du Cloux to describe the infinitesimal 
neighborhood of the corresponding representation via Kirillov's correspondence. © 1999 Elsevier 
Science B.V. All rights reserved 
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O. Introduction 

Let g be a real finite-dimensional nilpotent Lie algebra. Let us consider a coadjoint 

orbit M in the dual space g*. It is a symplectic leaf of the Poisson structure of g*. The 

notion of transverse Poisson structure, which is a kind of Poisson algebra has been defined 

by Weinstein [36]. Moreover, Dixmier-Kiri l lov's  theory [8] associates to M a primitive 

ideal J of the enveloping algebra U(g) of g. Fokko du Cloux [11] has defined a notion 

of infinitesimal neighborhood of J the space Prim U(g) of the primitive ideals: it is an 

associative algebra. The underlying philosophy of this work is that Fokko du Cloux's algebra 
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must be a quantization of  the Poisson algebra defined by Weinstein. Let us consider the 

case M = 0. Then Weinstein's algebra is SCq), Fokko du Cloux's one UCq), which is 

rightfully considered as a quantization of  S(~). In a general case, in the relation between 

Weinstein's algebra and that of  Fokko du Cloux, one is less evident. However, we shall see 

from examples, there are convincing similarities. 

Let us describe the two tackled problems. We fix a commutative field k with characteristic 

zero. Let g be a nilpotent Lie algebra and M a coadjoint orbit in the dual space g* of the 

Lie algebra. 

Let us consider S(g) the symmetric algebra of g considered as the algebra of  the poly- 

nomial functions on .q*. It is a Poisson algebra. Let I be the ideal formed by the functions 

vanishing on the orbit M. It is a Poisson ideal, S ( g ) / I  is the algebra of  the regular functions 

on M, provided with the Poisson bracket deduced from the Poisson structure of  S(g) [35]. 

It has been proved by Vergne [35] for the generic case, by Arnal et al. [1] and Pedersen 

[25] in the general case, that S ( g ) / I  is a Poisson-Weyl algebra: In other words, there exist 

r c ~d and 2r elements pi,  qi, i c {1 . . . . .  r} of  S( .q) / l  such that 

1. S( .q) / I  = k[p~ . . . . .  p~, q~ . . . . .  q,.], 

2. {Pi, Pj} = {qi, qj} = O, {Pi, qi} = 6i.j (Darboux's relations). 
The first problem which we considered is the following one. The functions Pi, qi are the 

restrictions of  polynomial functions f i ,  gi defined on .q*. It is natural to wonder whether we 

can choose extensions such that Darboux's relations are still being satisfied. In algebraic 

terms, does there exist a homomorphism of Poisson algebras S ( ~ ) / I  ~ S(~) which is a 

right inverse to the canonical projection S(~) ~ S ( ~ ) / I ?  

The simplest examples show that it is not true. However, we can often find rational 

functions f i ,  gi defined on an invariant Zariski open set of.q* including M and still satisfying 

Darboux's relations: for example such is the case if the orbit M is generic [35] or, at the 
extreme opposite if dim M = 0. 

Although we cannot formally prove it, in general, it appears impossible. Here, we prove 

that we can find "functions" f i ,  gi, defined in a formal neighborhood of M, still satisfying 
Darboux's relations. In other words, the projective limit SCq) = lim nS( .q) / l  '~ has a natural 

structure of  Poisson algebra, and the ~ ,  ~ are in S(~). 

This theorem is inspired and motivated by similar results of  Fokko du Cloux on the 

enveloping algebra U(.q) of ~q. Let us consider a rational ideal J of  U(.q) (this is a prime 

ideal such that the center of  the fraction field of  U(.q) /J  is equal to k [8]). Dixmier- 

Kirillov's theory asserts that U(.q) /J  is a Weyl algebra, generated by 2r generators ai, bi, 
i ~ {1 . . . . .  r} (r is the weight of  J [8]) satisfying commutation relations 

[ai, aj] = [bi, bj] = O, [ai, bj] = ~i,.i, i, j ~ {1 . . . . .  r}. 

Fokko du Cloux proved that in the completion U(~) = l im , lU(q , ) / J  '~ we can find 
<._____ 

elements ~//, b/projecting itself by canonical projection U(9) ) UCq) /J  on the previous 
elements, and still satisfying the same commutation relations. 

Our result is related to those of  Weinstein's. Let us assume that k = ~. Let us fix an element 

/z of  M. Then there exists an open neighborhood of /z  in ~q* (for the usual topology), and 
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in V analytic functions f i ,  gi extending the Pi, qi, still satisfying Darboux's relations. The 

comparison of  these two results, and examples that we have calculated, suggests there exists 

a neighborhood V of M in ,q* (for the usual topology), and in this open analytic functions 

(and may be algebraic) f i  M, gf f  extending the functions Pi, qi, still satisfying Darboux's 

relations and such that, moreover, the restriction of partial derivatives to M are polynomial. 

The second problem which is studied concerns the transverse structures. Let us denote 

C the commutant of the lifting of  the f i ,  and gi: 

c = / ~ ( . q )  I{&friI=o,{~,dil=o v i ~ { 1  . . . . .  rl/. 

Let h be the codimension of  M in g*. We prove that C is an algebra of formal series in 

h variables, provided with a structure of  Poisson algebra singular at 0. Its isomorphism 

class does not depend on the considered choices. We prove that for (k = R), this algebra 

is the algebra obtained from Weinstein's one (it is a Poisson structure in a neighborhood 

of  zero in Rh, singular at 0) if we consider Taylor's series at the origin. The use of Dirac's 

brackets formula allows the calculation of  the commutant C with an extreme simplicity. 

The transverse structure is given, in convenient coordinates, by rational functions. We show 

that the graded algebra of C in its maximal element is isomorphic to the symmetric algebra 

of the stabilizer ~qz, at a point of  the considered orbit. Our construction of  C is similar to 

Fokko du Cloux's construction. He considers the commutant D of  the elements di. ~, in 

the completion/)(.q): 

D = { 3 c  /)(g) l [9 ,  d i l = 0 , [ 3 , ~ i l = 0  Vi e{1  . . . . .  r}}. 

In general this commutant is a non-commutative algebra of formal series in h variables. 

This formal similarity between C and D, as well as similarities between the formulae 

(see examples), are a first justification to our assertion "Fokko du Cloux's algebra is a 

quantization of  Alan Weinstein's transverse structure". 

1. Definitions and some properties of Poisson algebras and Poisson modules 

1.1. Poisson algebras and Poisson ideals 

Let us recall that a Poisson algebra is an associative unitary commutative algebra A en- 

dowed with a bilinear map A x A > A denoted by {., • }, called Poisson brackets, providing 

A with a Lie algebra structure and satisfying the relation {ab, cl = a{b, c} + {a, cJb lor all 

a .b ,  c i n A .  
in A, two elements a and b are said to commute if {a, b} = 0. A Poisson ideal of a 

Poisson algebra A is an ideal of A considered as an associative algebra and an ideal of  A 

considered as a Lie algebra. 

Example 1. Let g be a Lie algebra, the symmetric algebra S(g) of  ~q has a structure of 

Poisson algebra defined by the bracket {x, y} = [x, y] for all x, y of g. Let .A the adjoint 
algebraic group ,q. Any A-invariant ideal of  the symmetric algebra S(.q) is a Poisson ideal. 
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For all subset X of  the dual ~* of  g, .A-invariant by the contragradient action, the ideal I (X) 

of  the zeros of  X is a Poisson ideal. The algebra S(~)/I  (X) is a Poisson algebra. 

When I is a Poissonideal of  A, the bracket {I, I} is aLie ideal but is not generally a Poisson 

ideal: the condition A{I, I} C {I, I} may not be satisfied. (Examples are given in [31].) 

In part 2, we shall use the descending series of  a Poisson ideal I defined by ~ 11 = I 

and ~%-')n+l I = {I, ~n} for n _> 1. They are Lie ideals. We shall use the Lie ideals {I", I m }, 

n, m E ~1. Provided with the Poisson bracket, I / I  2 is a Lie algebra over the ring A/I .  

Proposition 2. We have 
(1) {I n, I m} C In+m-l , forn andre E ~ (I  -1 = I 0 = A) 

(2) (a) ~ n I  + 12 is a Poisson ideal, f o rn  > 1, 

(b) {~nl  + 12, ~mI  q- 12} C ~,,+mI -k- 12. 

1.2. Poisson modules, Poisson cohomology, Poisson extension of a Poisson algebra 

1.2.1. Definition of a Poisson module over a Poisson algebra 

Definition 3. Let A be a Poisson algebra. Let M a vector space and End M be the algebra 

of the endomorphisms of  M. The vector space M is called a Poisson A-module if we have: 

(1) A homomorphism of associative unitary algebras p : A---~ End M; we shall denote 

p ( a ) ( m ) = a . m ,  a E A, m ~ M. 

(2) AhomomorphismofLiealgebrasco : A ~ EndM;weshalldenoteco(a)(m) = [a, m], 

a E A ,  m E M .  

(3) The following compatibility relations between the structures defined by p and co: 

[ b , a . m ] = a . [ b , m ] + { b , a } . m ,  [ab, m ] = a . [ b , m ] + b . [ a , m ] .  

Example  4. A is a Poisson A-module. More generally, if I is a Poisson ideal, I and A / I  

are Poisson A-modules. 

P rope r ty  5. Let M and N be Poisson A-modules. Then the tensor product M ~A N is a 

Poisson A-module provided with the structure: 

1. a, m ~A n = am ~A n = m ~A an; 

2. [ a , m ® a n ] = [ a , m ] ® A n + m ® A [ a , n ] ,  a E A , m E M ,  n E N .  

We have a correspondence between Poisson module and Rinehart module. For further 
information, cf. [16,24,30,31]. 

1.2.2. Definition of a cochain complex and of the cohomology Hl~oisson(A, M): 

comparison of H~oisso n (A) with H~e Rham (a )  
The cohomology of  a Poisson algebra A has been defined by Lichnerowicz [19] when 

the algebra A is the algebra of  functions C °° (N), N being a Poisson differentiable variety 
C ~ .  For the general case, see [16,33]. 
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Property 6. Let M be a Poisson A-module and n ~ ~. Let us denote Alt'~'D (A, M) the 

vector space defined by for n = 0, Alt°'O(A, M) = M, for n > 1, Alt'7'D ( A, M) = 

{ f  : A'h ~ M; f is multilinear alternating, and a derivation of  A into M in each variable}. 
LetAltO(A, M) = ~n>_oAltn'o(A, M). Letd  : Alt°(A, M) ~ Alt°(A, M) betheendo- 

morphism defined by 

dov(al) = [al, v] if v 6 Alt°'D(A, M) = M, 

d,, v(at, a2 . . . . .  an+l ) 
i = n  + I 

= Z (--1)i+l[ai' v(al . . . . .  ai . . . . .  a n + l ) ]  

i = 1  

+ Z (--1)i+Jv({ai,aj},al . . . . .  ai . . . . .  ~i,a, ,+l) ,  i fn  > O, Vai C A. 
15i<.j<n+l 

Then the couple (Alt ° ,  d) is a complex of  vector spaces of degree +1. 

We denote by H~oisson(A, M) the cohomology of the the complex (Alt O, d), called 
cohomology of the Poisson algebra with values in M. For M = A, n~oisson(A, A) will be 

called the cohomology of the Poisson algebra A and will be denoted nf~oisson (A). 

1.2.3. Comparison of  the G. de Rham complex of a Poisson algebra with its Poisson 

complex 
Let S be an associative unitary and commutative algebra, ~ s  the S-module of the differ- 

entials of S over k and d : S ~ 12s the associated derivation [3, Chap. 3, p. 134]. Let A (S-2s) 
the exterior algebra graded with the pth exterior powers AP(~2s) of the S-module S2s and 

(d °, A(l'2s)) the de Rham complex of S over k. We denote nSeRham(S) the associated 
cohomology [3, Chap. 10, p. 43]. 

In [31] we describe a morphism of complexes q~ from the de Rham complex of A into the 
Poisson complex (d, Alt ° (A, A)). We deduce by passage to the quotient the homomorphism 

of graded vector spaces H(q~) : HSe Rham(A) ~ Hl~oisson (A). There is an important case 
where H(40 is an isomorphism: the algebra A is a symplectic algebra over k. Let S be an 

associative unitary commutative algebra and an element X in Der S. There exists one and 
only one odd derivation ix : A(I2s) > A(S2s) of degree - 1 such that ix(ds)  = X(s).  for 

all s in S. 
Let co E A2(S2s). The couple (S, co) is called a symplectic algebra (see [20, Definition 

1.3]) if: 
1. dco = 0, 
2. the map Io~ : Der S ) S2s defined by l,o(X) --- ixco for X ~ Der S is an isomorphism 

of S-modules. 
We shall denote Xh the unique derivation such that ix~,co = db. Any symplectic algebra 
(S, co) is a Poisson algebra provided with the bracket {a, b} = ix,, (ixt, co) [20]. We have 
{a, b} = ix ,(db) by definition of Xt, and hence {a, b} = Xo(b). We have the following 



158 M. Saint-Gerrnain/Journal of Geometry and Physics 31 (1999) 153-194 

property stated by Lichnerowicz [19, p. 259] in the context of  the Poisson manifolds which 

are symplectic: 

P rope r ty  7. Let (S, co) be a symplectic algebra, then the de Rham and Poisson cohomolo- 

gies S, H~e Rham (S) et Hl~oisson (S), are isomorphic. 

Proof. We show that H(q~) is an isomorphism of complexes (see [31, p. 16]). [] 

1.2.4. Extensions of Poisson algebra 

Definition 8. Let B be a Poisson algebra and M a Poisson B-module. A Poisson extension 

of B by M is the data of  a Poisson algebra A and of  an exact sequence of vectors spaces (~) 

( ~ ) : 0  ) M g) A f )  B )0 

such that the map f is a Poisson algebra homomorphism and where the homomorphism of 

vector spaces g satisfies 

(,) g(b.m) = ag(m) et g ( [b ,m])  = {a,g(m)}, 

with m E M, b 6 B a n d a  ~ A such that f ( a )  = b. 
The extension (~) of  B by M will be called inessential if there exists a homomorphism 

of Poisson algebras u : B ) A such that f o u = IdB. 

The Poisson extension (~) of  B by M will be called a split extension by a homomorphism 

of associative algebras if there exists h : B ~ A homomorphism of associative algebras 

satisfying f o h = IdB. 

The set of  equivalence classes of split extensions of B by M will be denoted by E X (B, M ). 

The set E X ( B ,  M) is in bijection with H2oisson(B, M). We have the following theorem: 

Theorem 9. 

(1) I f  a belongs to Z2(B, M), then the Poisson extension of B by M: 

( ~ ) : 0  ) M  i ) ( B G M ) a  I ' )B  ~0 

associated to a where (B G M)a is the vector space B • M endowed with the structure 
of Poisson algebra defined by 

(*) (b, m)(b', m') = (bb', bm' ÷ b'm) et {(b, m)(b', m')} 

= ({b, b'}, [b, m'] - [b', m] -t- a(b, b')), 

b, b' E B, m, m' E M and i (m) = (0, m) p(b, m) = b, belongs to E X ( B, M). 
f 

(2) lf(~) : 0 ) M  g~ A ~ ~ B )Oisaspl i tPoissonextens ionofBbyMinEX(B,  M) 
S 

with the split homomorphism of associative algebras s : B ~ A, then we can associate 

to (~ ) a 2-cocycle, o9, element of Z2oisson ( B, M) defined by 

g(og(x, y)) = {s(x), s(y)} - s({x, y}), x, y E B. 
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Moreover, if s' is another homomorphism of associative algebras satisfying the equality 
f o s '  = Ids,  the cocycle co ~ associated to s' satisfies a) - o9' = &u, u being the 
derivation of B into M defined by, g o u = s - s'. We have in H~,oisson(B, M), the 
equali~, -~ = -~'. 

(3) We have a bijection of H2oisson ( B, M) onto E X ( B, M); the inessential extensions form 
a unique class in EX(B,  M) corresponding to the zero in H~ois~on(B , M). 

Proof.  ( 1 ) and (2) are easily proved. 

(3) Let q~ • H~oi~mn(B , M) >EX(B, M) the map such that q~(~) = (~-), where ~- is 
defined by 

(~) : 0  ) M  i /' ) (B O M)I,,) ) B ~0. 

Let (p : EX(B,  M) > Hfloisson(B, M) the map which associates to (g) 0 ~ M ,v • ) 

f 

A ~ ~) B )0 the equivalence class ~ where o)is defined by g(o)(x, y)) = {s(x),s(y)} - 

s({x, y}), s • B )A being the homomorphism of associative algebras satisfying the 

equality f o s = IdB. We verify that g, and q) are well defined (see 1131]) and that we have 
(p o ~ ---- IdEx(B.M) and • o (p = IdH2(g. i  ). [] 

1.3. The Weyl algebra W,,(k) 

1.3.1. Definition of the Poisson-Weyl algebra Wj, (k ) and of its cohomology 
A commutative algebra generated by the family (X 1 . . . . .  X,,, YL . . . . .  Y,, ) provided with 

the structure of  Poisson algebra such that 

Vi, j c { 1  . . . . .  n}, {Xi, Y j }=&i ,  {Xi, X j } =  Yi, Y j}=O 

is called a Poisson-Weyl algebra of  order n, and denoted by W,, (k). 
The Poisson-Weyl algebra IV,, (k) is thus the algebra k[Xi . . . . .  X,,, Y~ . . . . .  Y,, ] provided 

with the bracket 

~ ( Of Og 
{f' g} = ~ i  OYi 

i=1 

Of 8g \ 
IV f, g~k[X,Y]. 

OYi OXi ] 

A Poisson algebra is said to be simple if it has no other Poisson ideal than (0) and A. We 

show that the Poisson-Weyl algebra W,, (k) is simple and that its center is the field k. The 
Poisson-Weyl algebra is a symplectic algebra (W,, (k ), ro = ~7~i-'1 dXi A dYi ) which the 
associated Poisson bracket is the bracket of  W,, (k) as Poisson algebra. 

Proposition 10. Let Wn (k) be the Poisson-Weyl algebra of order n. Then 
(l)  H°oisson(Wn(k), W,,(k)) = k, 
(2) forall  p > 1 H/,'oi~so,(W,,(k), W,,(k)) = O. 
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Proof. The Poisson and de Rham cohomologies coincide by virtue of Property 7. The de 
Rham cohomology of Wn (k) is acyclic in degree greater than zero from Nicolas Bourbaki's 

theorem [3, Chap. 10, p. 159 example]. [] 

1.4. Centralizing sequence of  a Poisson A-module M: properties of  nilpotence 

Let A be a Poisson algebra, M a Poisson A-module. By definition 

H ° ( A , M ) =  {m e M:Va ~ A [ a , m ] = 0 } .  

Each element of H°(A,  M) will be said to be central. Let (xl . . . . .  Xn) a sequence of 
elements of M. We say that the sequence of elements (xl . . . . .  Xn) of M is centralizing if 

x I is central and if we have the inclusion, for all i > 2, 

[A, xi] C Ax i - i  + ' '  • 4- AXl. 

In this case, for all h 6 {1 . . . . .  n}, Ih = Axh +" " 4- Axj is a Poisson A-submodule of M. 

We check this easily (cf. [31]). 

Proposition 11. Let (xl . . . . .  Xn) be a centralizing sequence. Let us set lh = Axh + . . .  + 

Ax|, h E {1 . . . . .  n} et I0 = {0}. Then we have 

(1) {I,,, Ih} C Inlh 4- / h - l ,  Vh > 0(1_ 1 = 0). 
(2) Yp > 2, ~ , I ,  C I,~ + l,,_p+j. 

Corollary 12. Let I be a Poisson ideal. We suppose that I is generated by a centralizing 

sequence. Then: 

(1) i f  the length of  the centralizing sequence is h, then 

~ h + l l  C 12; 

(2) for  all n ~ ~, there exists p E ~ such that ~ p l  C I n. 

Let 9 be a Lie algebra of a linear algebraic group and ¢4 its adjoint group. Let M be a 
coadjoint orbit of .A in g* and I the Poisson ideal of the Poisson algebra S(~) associated to 
this orbit. We know that the S(g)/I-module 1/12 is a Lie S(~)/l-algebra. Let P(M,  k) be 

the algebra of polynomial functions on the orbit. The algebra P(M,  g) of the polynomial 
functions on M with values in ~ is a Lie algebra over the ring P (M, k), The structure of 
P(M, k)-module is defined naturally, the multiplication by 

[f,  h](v) = [ f (v) ,  h(v)], f ,  h E P(M,  g), v E M. 

The Lie algebra P(M,  ~) is isomorphic to the Lie S(~)/l-algebra S(~) / I  ® ~ obtained by 
extension. We show that the Lie algebra 1/12 is a Lie subalgebra of S(~) / I  ® ~. 

Proposition 13. Let M be a coadjoint orbit of  g* and I the associated ideal. Let P (M, g) 

S(~) / I ® g the Lie algebra over S(~) / I of  the polynomial functions on the orbit M with 
values in .q. 
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Then the map 49 : 1/1 2 ~ S (8 ) / I  ® ~ such that for  f in I and v in M 

161 

$ ( f + 1 2 ) ( v ) = d v f  

is an injective homomorphism o f  Lie S(8) /  l-algebra. 

Proof. Let 7t : I > P ( M ,  8) be the function such that we have, for h in I and v in M, 

~ ( h ) ( v )  = d~h. For all v in M, the tangent space T~M of M at v is the orthogonal 8~ of  

the stabilizer 8~, of  v in 8*. We deduce, h vanishing on M, that the linear map d~,h vanishes 
± 

on ~q,,, that is that we have dvh c (8~) ± = 8~,. 

Let us verify that the map ~ is defined by passage to the quotient. We have 7t(l  2) = 0. 

Indeed for f ,  g i n l  andv inMi tappears tha t  ~ ( f g ) ( v )  = d v ( f g )  = f ( v ) d v g + g ( v ) d ,  f = 

0. Thus the map 49 : 1/1 2 ~ S ( 8 ) / I  ® 8 is well defined, we verify that it is S(8)/l-l inear. 

It is injective, since we have f ( v )  = d , , f  = 0 for v E M. Let us verify that for all f et 

g in I we have 49({f + 1 2, g + 12}) = [49(f + 12), 49(g + 12)], that is that d{f. g}(v) = 

[d,,f, d~,g], v E M (for a particular case of  this formula see [13, p. 585, 2~]). By definition 
of the bracket in S(8), we have 

{f, g}(v) = v([d,,f,  dvg]), v E M,  

and by definition of  the derivative it appears that 

d~,{f, g}.h = 
{f ,  g}(v + th) - {f, g}(v) 

(modt ) ,  h E8*. 

We must evaluate 

{f ,  g}Cv + th) - {f, g}Cv) = (v + th)C[dv+th f ,  dv+,hg] - vC[dvf, dvgl). (*) 

We have 

dv+t~f  - d v f  = t d 2  f .h  (rood t2), 

d v + t h g -  d v f  = t d 2 g . h  (rood t2). 

Reporting in (*), we use the linearity of  the bracket in g and the fact that d f (v) and dg (v) 
belong to 8~,, we obtain {f, g}(v + th) - {f ,  g } ( v ) / t  = h([d~,f, d~,g]) (modt) .  [] 

Corollary 14. Let lZ E 0*. Let us assume that the stabilizer o f  Iz is nilpotent: ~ ,  ~l~ : 

0 ,for some n o f  ~. I f  I is the associated ideal o f  the orbit through #, then we have 
~ n l  C 12. 

Proof. Indeed for all f in 1/12, its image by 49 at a point v of  M belongs to ,q,,. [] 
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2. Lifting map, commutant and graded algebra 

2.1. General lifting Poisson homomorphism 

2.1.1. A lifting theorem 

Theorem 15. Let B be a Poisson algebra and M a Poisson B-module. Let (~ ) an extension 

o f  B b y M ( ~ ) : O  ~M g>A f > B  >O. L e t C b e a P o i s s o n a l g e b r a a n d h : C  >B 

a homomorphism o f  Poisson algebras. Let us assume that there exists a homomorphism o f  

associative algebras s : C > A such that we have f o s = h and H~oisso n (C, M) = 0. 

Then 

(1) there exists r : C > A a homomorphism o f  Poisson algebras such that f o r = h 

(~) : 0 ,. M g ,  A / ,  B ,. 0 

C 

(2) i f  moreover Hploisson(C, M )  = O, then two homomorphisms o f  Poisson algebras, r and 

r ~ such that f o r = h et f o r' = h, satisfy the property: 

there exists m in M such that f o r  all x o f  C 

r ' (x )  = r (x )  ÷ {r(x), g(m)}. 

Proof.  See [31, p. 29]. [] 

2.1.2. Study o f  an isomorphism o f  Poisson modules 

Let M be a Poisson A-module. We endow the A-module A @ H°(A,  M) of  the structure 

of  Poisson A-module defined by: [a, b @ m] = {a, b} ® m. 
The following theorem is similar to Fokko du Cloux's result [ 1 1, Lemma 4.2.1, p. 1 78]. 

Theorem 16. Let us assume that M is generated by a centralizing sequence (xl . . . . .  Xn) 

and that A is isomorphic to a Poisson-Weyl algebra. 

Then the linear map 49 : A ® H°oisson(A, M )  > M such that 49(a ® m) = a • m with 

a ~ A and m ~ M is an isomorphism o f  Poisson A-modules. Moreover, the dimension o f  

H°oisson(A, M )  is finite. 

Proof.  We shall show by induction on n that 49 is a bijection. For n = 1, the surjection of  4~ is 

obvious and the injection of  491 is obtained by the simplicity of  A. The induction hypothesis 
states thus: Let us assume that for the A-module M'  generated by a centralizing sequence 

having for length n - 1, we have an isomorphism of Poisson A-module A ®k H ° ( A ,  M')  ~-- 

M'. Then let M = Axl  + . . .  + Axn be a module generated by a centralizing sequence 
having a length n. 

Since Axl  is a submodule, M / A x l  is a Poisson A-module generated by a centralizing 

sequence (~_, ~ . . . . .  Y~n) with 17 = xi ÷ A x l ,  i ~ {2 . . . . .  n} of  length n - 1. From the 
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short exact sequence of  Poisson A-module 

i p 
0 ) Axl ~ M ~ M/AXl  ~0, 

we deduce the long exact sequence 

o o 
0 ) Hpoisson(A, Axl )  ) H 0 Poisson(A, M) ) Hpoisso n 

(A, M / A x l )  > Hloisson(a, Axl )  ) "'" 

If we have xl = 0, then it appears that the equality Hploi~on(A, Axl )  = 0. Otherwise the 

isomorphism Axl ~-- A and the fact that H Ipoisson(A' AxI)  = Hloisson:, (A, A) vanishes, is a 
consequence of Proposition 10. 

We have the following diagram: 

0 A 5) H~,oisson(A , AXl) A ~ o o ,, --.. ~ Hpoisson(A , M) __.. A ® Heoisao~(A, M / A x l )  ~ 0 

II II 
0 . Axl  M M / A x I  . 0 

From it we infer that q~ is an isomorphism. 

Let us show that dim HOoisson (A, M) est finite. When M ---- Axt ,  then H°Poisson 'tA , M) ---- 
kxl. An induction similar to the previous one achieves the proof. [] 

2.2. Lifting of  A / l 

In the rest of the paper, for a Poisson algebra A and I a Poisson ideal of A such that 

every Poisson ideal of A is generated by a centralizing sequence and such that the algebra 

A / I  is isomorphic to Poisson-Weyl algebra, we shall say that "A and I satisfy the lifting 

hypothesis" Let A = li_m ,, A / I "  the projective limit, it is a Poisson algebra. We shall denote 

J;, " ]t ) a / l" the canonical projection. 

2.2.1. Construction o f  a lifting homomorphism from A / I into 

Theorem 17 (Lifting theorem). Let A and I satis~ the lifting hypothesis. Then there exists 

a homomorphism o f  Poisson algebras ~ : A / I  ) A called lifting homomorphism such that 

f l  o ~b = Ida/i.  

Proof. We proceed in two steps. [] 

First step. We shall lift A / I  into A / I  2. For that, we use the decreasing sequence of 

Poisson ideals 12 + ~,~ I,  n > 1, from Proposition 2. In the first instance, we have the exact 

sequence of  Poisson algebras 
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0 , I / ( ~ i + i  2) i2 , A / ( ~ ) 2 I + I  2) ~o~,~ , A / I  , 0 

1 
A/I 

We apply Theorem 15 to this diagram. It is clear that (~) is a Poisson extension of  A / I  
by 1/(921 + 12). Thus 1/(921 + I 2) is a Poisson A/1-module. The A / I  is a Poisson- 

Weyl algebra, hence it is a commutative algebra generated by an algebraic independent 

family over k; by an arbitrary lifting of  the generators of this algebra, there exists a 

homomorphism of associative algebras such that ~012 o s = IdA/l. It remains to check 

H2oisson(A/l, I / ( 9 2 I  + 12)) = 0. By hypothesis, the Poisson A / I  module I / ( 9 2 I  + 12) 

is generated by a centralizing sequence. From Theorem 16 applied to M = 1/(921 + 12), 

we obtain the isomorphism of Poisson A/1-module A / I  ® H°oisson(A/I, 1/(921 + •2)) _~ 

I / ( 92 I +12). The module I / ( 921+ I2) is a direct sum of dim H°oisson ( A / I, 1/(921+12)) 
copies of  A/ I .  On the other hand H2poisson(A/I, A/1)  = 0 from Proposition 10. Hence we 

have H2oisson(A/I, 1/(921 + 12)) = 0. Theorem 15 affirms the existence of a homomor- 

phism of Poisson algebras re : A / I  ~ A / ( 9 2 I  + 12) such that g91.2 o r2 = IdA/i. 
Once again, we apply the same theorem to the diagram for p > 3 

0 , ~ ) p I + I 2 / ~ p + l I + I  2 • A / ~ p + l I + I  2 ~o~,p+l . A / ~ p I + I  2 . 0 

A/I 

and we obtain rp+l homomorphism of Poisson algebras such that q)p,p+l o rp+l = rp. If  

the natural number n is the length of  the centralizing sequence generating I,  we use the 

property of  nilpotence 

9n+l  I + 12 = 12 

from Corollary 12. We have ~01,2 o r2 = IdA~t, ~o2,3 o r3 = r2 . . . . .  q)n,n+l o rn+l = rn. And 

thus we obtain fl,2 o rn+l -- IA/I, where the map fl,2 : A / I  2 ~ A / I  is the canonical 
projection. Let us set u2 = rn+l, the first step is ended; there exists a Poisson homomorphism 

of Poisson algebras u2 : A / I  > A l l  2 such that fl,2 o u2 = IdA/l. 
Second step. Step by step for h > 2, using Theorem 15, we have the diagram 

0 . I h / I  T M  . A / I  h+l Yh,h+l , A / I  h . 0 

A / I  

where the module Ih / I  h+l is a Poisson A l l  h module. Since the module l h / I  h+l is a 

Poisson A / I  module via Uh, there exists Uh+ 1 homomorphism of Poisson algebras such that 

fh,h+l o Uh ~ Uh+l. 
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We conclude to the existence of  the map  ~b : A / I  ~ A" such that ~'(x) = (x, u2(x), 
u3(x)  . . . . .  u~(x) . . . .  ). The map ~ is a homomorph i sm of  Poisson algebras satisfying 

f l  o ~ =  IdA/l . [] 

2.3. Uniqueness of the lifting homomorphism from A / I into 

2.3.1. Study of a Poisson automorphism 

Lemma 18. Let I be a Poisson ideal of A generated by a centralizing sequence and A =- 
lim,,A / l". Then for all i ~ ~, e adi = Y~=0  1/k ! ad k i defines a Poisson automorphism of 

Poisson algebras a', leaving stable I and acting trivially on A l l .  

Proof .  The map e ad i is well  defined, since for all x 6 A 'and  n 6 t~, there exists k E ~ such 

that ad k i(x) E ( In)A;  It is sufficient to use Corollary 12: Vn E ~ 3p ~ ~ • ~ i , l  C 1 '1. 
[] 

2.3.2. Uniqueness of the lifting homomorphism 

T h e o r e m  19. Let A and I be a Poisson ideal A satisfying the lifting hypothesis (see 

Section 2.2). Let p', p,1 be two homomorphisms of k-algebras from A / I  into A which 
arerightinverseof f l  : A ~A/I .  Then, thereexistsi E ~i'suchthatp' = e adi o p .  

Proof .  We know that if  h is the length of the central iz ing sequence generat ing I, then we 

have 

~h+J  I + 12 = 12 

(Corollary 12). We have the sequence of homomorphisms  of Poisson algebras 

A / I  '~+1 ~ A / In  . . .  ~ A / I  3 ~ A / I  2 

• > A / ~ h + l  2 > A / ~ h _ l l + I  2 . . .  ) A / ~ 2 1 + I  2 

A / ~ l l  + 12 ~ A/1.  

Let us state J~ = I ,  -/2 = ~ 2 1  + 12 . . . . .  Jh = ~ h l  + 12, Jh+l = 12, Jh+2 = 13 . . . . .  

Jh+n = i n + l  . . . .  

We have a projective limit,  let us state A = l imnA/Jn.  Let a be of  A / I ,  the e lement  

p(a) = (Pl (a),  p2(a)  . . . . .  p,, (a) . . . .  ) be longs  to A" = li_m n A / I  n. F om  p(a), let us define 

~ (a )  = (P'I (a),  ~2(a) . . . . .  Pn (a) . . . .  ) of  the fol lowing form: 

"ill (a) = Pl (a), "p2(a) = ~02(p2(a)) . . . . .  

"Ph(a) = ~Ph(p2(a)), Ph+l (a) = p2(a)  . . . . .  "fih+,,(a) -- P,,+I (a), 



166 M. Saint-Germain/Journal of Geometry and Physics 31 (1999) 153-194 

where the map q)p : A / I  2 ~ A / ~ p l  -k- I 2, for 2 _< p < h, is the canonical map. The 

element ~(a)  belongs to li_m ,, A / J~. 

Let ~':  A/J1 ~ ~ n a / J ,  

and 

"fi' : A/J1 ~ li_m,,A/J,~ be obtained from p and p' .  

In the following, we shall show the equality ~' = ~ o ~" for some Poisson automorphisrn P, 

and we shall deduct p '  = 4~ o p. This demonstration is done step by step. 

Let us state A i = ~' -- ~ and denote P,, • ~, ~ A~ J,, the canonical projection. For all a 

to A / I ,  it appears that Pl o A l (a) = 0 denoting J,,, = Ker P, ,  for n c N; thus the map A I 

satisfies 

AI : A/JI ~ Jl. 

Let us show that P2 o A 1 : A/JI ~ J l /J2  defines a Poisson 1-cocycle, in other words 

P2 o Al belongs to Zloisson(A/J1, Jl/J2). The module Jt/J2 is an A/Ji-module by 

a .  j ---= P2(p(a) ) .  j et [a, j ]  = {P2(p(a)), j}a/j2a E a / J i ,  j c Jl/J2; 

a simple calculation shows that (dj (/°2 o A1))(a , b) = -{P2  o Ai (a), P2 o A 1 (b)}. But 

P2 o A1 (a) belongs to JI/J2 and {J], J2} is included in J2. Thus we have 

dl(P2 o Al) = O, 

and thus P2 o AI belongs to  Z1poisson(A/Jl, Jl/J2). The module JI/J2 is generated by 
a centralizing sequence, Theorem 16 leads to the isomorphism J I / Jv  ~- A/J1 ® H 0 - Poisson 
(A/JI ,  JI/J2). But the equality Hloisson(A/Ji, A/J])  ---- 0 (Proposition 10), implies 
H 1 (A /J i ,  Jl/J2) ~- O. The map Pvo  A I is therefore a coboundary; this implies Poisson 

/°2 o eXl(a ) = [a, Ul], 

for all a of  A/JI  and for some u] • Jl/J2. From this, we deduct that A1 (a) -- {v], ~'(a)} 

belongs to Ker P2 = ~ for some vl • J1. Since vl • ~ ,  according to Theorem 18 e aov] 
is a Poisson automorphism from .4 onto A. We have 

/ ( a )  -- ead vl ~'(a), modulo J2. 

Let us denote Pl = cad vl P. 

A2 = ~' -- PL, then the element P2 o A2(a ) belongs to Ker P2 = J2. 
Following step by step, at the end of  a first stage 

T ( a )  - -  eadvhe  advh i . . . e a d t q ~ ( a )  ' m o d u l o  J/h+l = (12)A,  

where v l • ~ . . . . .  vh • ~,. We continue 

T ( a )  ~ e advn+/ . . . .  e advt+'  . . . .  eadvl~(a), modulo J,,,+l+h. 
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The e ad ~'~+~' are Poisson automorphisms .7, from Theorem 18. Let us set ~,, = e ad ",' • • • e ~d ,,i, 

it is a Poisson automorphism li_m,,A/Jr, by composition. For all a c A / J I  the sequence 

(¢l(a))/e~ in A is a Cauchy sequence in A. Hence the sequence (¢l (a)he~ is convergent 

in ,4 separated complete. Let us denote ~(a)  = liml___~ ~c¢~ (a), ~ belongs to Auteoi~,,n ,4. 

Finally, we have found ~ : A ~ ,4 Poisson automorphism such that ~'  = ~o ~'. If we restrict 

ourselves to the ideals I" ,  from this we deduct the existence of  the map q~ of  Autpoisson (A') 

such that p '  = ~b o p. [] 

Corol lary  20. Let us assume that the hypotheses o f  Theorem 19 are satisfied. Let C be the 

commutant associated to a lifting Poisson homomorphism from A l l  into "A. 

Then the algebra C is independent from the choice of  the lifting homomorphism (modulo 

Poisson isomorphisms). 

2.4. Study o f  the commutant 

2.4.1. Properties related to the completion 

We shall call a filtration of  a Poisson algebra A, a decreasing filtration of  A given by 

vector subspace (A,I),,~y such that 

1. A,1 Am C A,+m 'v'n, m ~ Z 

2. {A, ,  A,,,} C A,,+m-I Vn, m E 7/. 

Let I a Poisson ideal A, the l-adicfiltration of  A is defined by A,, = 1 '1, n > 0 and where 

I" = A for n < O. 

If A is filtered by (A,,),, ~z, we shall call filtration of  a Poisson A-module M, a decreasing 

filtration of M for the structure of  A-module by subspaces (M,,),,~z with the additional 

condition 

A,1M,11 C M,l+,,1 et [A,1, M,,I] C M , , + , , I - I  n .  In C 7/. 

The I-adic filtration of  M is defined by: M, = I'l M. 
Let A be a Poisson algebra and I a Poisson ideal. We endow A with the topology associated 

to the I-adic filtration of  A. A completion of A is a filtered separated Poisson algebra 

complete for the associated topology, provided with a homomorphism of Poisson algebras 

jA " A > fi~ continuous and satisfying: for any filtered separated complete Poisson algebra 

A' and any continuous homomorphism of Poisson algebras f " A ~ A',  there exists a 

unique and continuous homomorphism of Poisson algebras f : A > A' such that J= o .jA = 

f .  A completion of l-adic is unique up to Poisson isomorphism, hence we shall say the 

completion of  A. 
We choose A" = l i m n A / l "  filtered by (I'1) A = Ker(A" ~ A / I  '1) and the map .jA " 

A - - - -~Ade f i nedby j z ( x )  = ( x + l , x + I  2 . . . .  ) . W e h a v e j A ( 1  tI) = . jA(A)AKer(A  ~ A / I " )  
A 

and the image ja  (A) is dense in A. 
Likewise, let M be a Poisson A-module endowed with the l-adic filtration, we define 

a completion of M denoted M. Then a completion is unique up to Poisson isomorphism. 
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We take M = li__m n M / I n M ,  filtered by the sets Ker(~t > M / I n M ) .  We denote by jM : 

M >/~ the map defined by jM (m) = (m + I M ,  m + I 2 M  . . . .  ), it is a homomorphism 

of Poisson A-module. We have jM (I  n M)  = jM (M)  N Ker(M > M~ I n M)  for n > 1, and 

the image j M ( M )  is dense in M. Moreover , /~  is a Poisson A'-module such that for all a 

in A and all ~ of  ,~ we have jA (a )m  = a • ~ et [ j z (a) ,  m] = [a, ~] .  From this equality, 

we deduct jM(a • m) = j z ( a ) j M ( m )  et jM([a, m]) = [ j z (a) ,  jM(m)] for a in A and m 

in M. 

L e m m a  21. Let I be a Poisson ideal generated by a centralizing sequence (X1 . . . . .  Xn) of 
A. Let us assume A is notherian. Then 
(1) Let us set -A = A / Ax  l + . . .  + Axi-1  for  i > 2 and I = A-£-~, + . . .  + A ~ ,  the I-adic  

completion o f  A, denoted by-A, is isomorphic as Poisson algebra to A / A j A ( x l ) + . . .  + 

AjA(Xi -1) .  
(2) We have I" = A"jA(Xl) + " "  q- A ja ( xn )  and the sequence (jA(Xl) . . . . .  jA(Xn)) is 

centralizing in A. 
I f  the sequence (Xl . . . . .  Xn) is regular in A, then ( j a (x l )  . . . . .  jA(Xn)) is a regular 

sequence in A. 

Proof. See [31, p. 41]. [] 

2.4.2. Properties o f  the commutant associated to a lifting homomorphism from A l l  into 

lim A / I " 

L e m m a  22. Let A and I satisfy the lifting hypothesis and ~o a lifting homomorphism from 

a / I into A. Let ~i'be the ideal Ker(A" ~ a / I ) o f  A and C the commutant o f  ~o( a / I ) in A. 

Let us denote m the ideal I 'A  C. 

Then 
1. We have an isomorphism o f  A /  I-modules 

o in~in+l) .  ( I")  A 0 C / ( In+l )  A f-) C ~-- H~oisson(a/I, 

2. We have the equality 

m n = ( I n )  A n C. 

Proof. 
(1) We have the exact sequence of  Poisson A / I - m o d u l e  for n > 0: 

0 >(In+l)  A > (In) A >(In)A/(In+l)  A >0. 

We deduct the exact sequence 

0 
0 ~'HOoisson(A/I, ( In+l)  A) > Hr~oisson 

( A / I ,  (In) A) ~ HOoisson(A/I, ( In)A/ ( In+l)A) ,  
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which is the sequence 

0 ) ( In+ l )  A N C  >(lit) A N C  > H ° ( A / I ,  ( I " ) / " / ( I"+~)~) .  

Let us show that the last arrow of this sequence corresponds to a surjective map. Let 

y be in H ° ( A / I ,  ( I " ) A / ( I " + J ) A ) .  We have v ---= c,, + ( l"+J)  A for some c, E ( I " ) "  

and {~o(a),c,,} ~ ( l "+ l )  A, Va c A / I .  The map ( : A / I  >(I'~+I)A/(I"+2)~ de- 

fined by ((a)  = {~0(a), c,~} + (I"+2) A is a cocycle, that is to say an element in 

Z ~oisson ( A / l ,  ( I " + I ) A / ( I n + 2 ) A ) . From the isomorphism ( I k ) A / ( l k + l ) ~ ~-- I k / l k + l 

for all k 6 ~, we can see that the A / 1 - m o d u l e  (I  ''+l )~ / ( I "+2)  A is generated by a cen- 

tralizing sequence. From Theorem 16, we have the isomorphism (I  i ' + l ) A / ( l ' - 2 ) '  ~-- 

A / I  ® H ° ( A / I ,  ( l "+ l )A / ( I i '+2)~) .  Consequently the module ( I '+1)~' / (1"+2)  * is a 

sum of copies of A / I ;  from the equality H¢oi~so n (A / I, A / I )  = 0 (Proposition 10), we 
obtain 

1 (in+l Hpoisson(A/l,  )A/( ln+2) '~)  : O. 

Therefore the map ~" is a coboundary. There exists an element bi,+j of (I  ' '+l )'~ such 
that we have {¢(a), -b,~+l } = {¢p(a), c,,} modulo (I"+2) A for all a in A / I .  Hence we 

have 

{¢p(a), c,,+l} E (I"+2) A, c,,+l = ci, + bn+l, b,,+l E (I"+1) '~. 

Step by step, we obtain a sequence of  elements (ci,+k)k~ in ( l"+k)  A such that {~p(a), 
c,,+k} c ( l"+k+l)  A, C,+k = ci,+k-J + b,,+k, where b,,+k belongs to (l"+k)/ ' .  This 

Cauchy sequence of  (I'~) A converges to an element x in (li ') A satisfying 

{~0(a),x} = 0, Va ~ A / I ,  x -~ y, m o d ( l " + t )  ''. 

Thus, the sequence 

0 >( I '~+I )ANC > ( I " ) A N C  > H ° ( A / I , I " / I  ' '+l) >0 

is exact. We conclude that 

( I" )  A N C / ( I n + l )  A N C ,,~ Hpoisson0 ( A / I ,  I n / l  '~+l ) 

forn  > 0 .  
(2) The inclusion (I)  n C (I")A implies m" C ( I" )~  NC.  To check the inverse inclusion, we 

o 1 1"/1'1+I). use the isomorphism of Lemma 22 (1 it )A N C / ( U + I )  A n C ~- Hr~oi~on (A/  , 
Let us consider the surjective map/,t " 1/12 ®,4/1 • "" ® a / t  1/12 tn times) > I " / I  ''+l 

obtained by using the multiplication in l-adic graduate of  A. The sets 1/12 being 

Poisson A / I - m o d u l e s  via ~0, the same happened for 1/12 ® a l l  "'" ®All  1/12 from 
Property 5; we verify that/z is a homomorphism of Poisson A / I - m o d u l e s .  We have the 

exact sequence of  Poisson A / I - m o d u l e s  

0 ~ Ker/z > 1/12 ® a / l  ~A/I 1/12 (n times) x in / l , ,+ l  • , -  )' ) 0 .  



170 M. Saint-Germain/Journal of Geometry and Physics 31 (1999) 153-194 

From this, we deduct the exact sequence 

0 o 
) H~oisson(A/l, G a l l  "'" ®a/ l  0 ~ H~oisson(A/l, Ker/z) I /12 I / I  2) H°~ ) 

H~;oisson(A/i,O i , , / i ,+1  ) o~o Hloisson(A/i ' Ker/z) 

1 HI(~  ) i n / i n + l  H~oisson(A/l, 1/12 ®A/I ®a/ l  1/12) J • .. H~oisson(a/I, ) ~ . . .  

The map coo is said to be the connecting homomorphism. We know according to 

Theorem 16 that 1/12 is a direct sum of copies of  A / I ,  and thus too 1/12 ®A//•  "" @A// 

1/12. But the algebra A / I  is a simple A/1-module .  One more time the A l l - m o d u l e  

Ker/z, submodule of  the semi-simple module 1/12 ®A/ / •  • • @A// 1/12 is a direct sum 

of copies of  A / I .  The equality Hloisson(A/l, A / I )  = 0 (Proposition 10) implies the 

following Hloi~son ( A / I ,  Ker/z) = 0. Thus the sequence 

o o 
H~oisson(A/l, 1/12) ® . . .  ® Hpoisson(A/l, 1/12) 

H°(~ ) Ht~oisson(a/l, I " / I  ''+l) ~0 

is exact. From the surjectivity of  H°(/z),  we infer the inclusion ( I ' )  A N C C (~(q C)", 

idest  ( I ' )  A A C C m ' .  [] 

T h e o r e m  23. Let A and I satisfy the lifting hypothesis (Section 2.2). Let us denote ~o a 

lifting homomorphism from A / I  in l i_mnA/l  n = A. Let us consider C the commutant o f  

¢p( A / I)  in A and let m = ~i'fq C. Then 

1. The commutant C is a closed Poisson subalgebra and a local ring o f  maximal ideal m, 

o f  residue field k satisfying 

C = l i m ,  C/m'. 
<______ 

2. Let ( e n )n ~ be a sequence o f  elements o f  C such that eo + m is C~ m, el -1-m 2 . . . . .  e~(1) + 
m 2 a basis o f m / m  2, e ~ ( p - 1 ) + l  -q- m p+I . . . . .  ec~(p) q- m p+I a basis o f m P / m  p+I fo r  

p>_2.  

Then 

- For all c ~ C there exists a unique sequence (Cp)p~ o f k  such that 

C ~ Z Cpep. 

- For all a o f  A there  exists a unique sequence (ap)pe~ of~o(A/I )  such that 

a ~ Z apep. 

3. Moreover, let us assume that A is noetherian and I generated by a regular centralizing 

sequence (xl . . . . .  Xn), then the maximal ideal o f  C is o f form m = CjA(x l )  + Cy2 q- 

• " • + Cyn, where (j~ (xl) ,  Y2 . . . . .  Yn) is a regular centralizing sequence, ja  : A > A 
being the canonical homomorphism. The algebra C is isomorphic as an associative 
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commutative unitary, algebra to the formal power series algebra k[[Xi . . . . .  X,,]], n 

being the length o f  the regular centralizing sequence generating I. 

P r o o f .  

(1') To show that C is a local ring with maximal ideal m = I 'A C, it is sufficient to prove 
A 

that m :~ C and that any element of C - m is a unit in C. The unit of A does not 

belong to ~, this implies that I 'A  C 5~ C. Let ~ 'be an element in C \ (C (~ I'), then _~ 

is like (Xl . . . . . .  ~,, . . . .  ) with xl 5 ~ 0 and {~', ~p(t)} = 0 for all t ~ A / I .  We apply the 

map J'l : A" ~ A / I  to this last relation that we know fl  o ~0 = IdA/t and J'l (x~) = x~; 

thus xl belongs to C ( A / I )  which is isomorphic to k as the center of a Poisson-Weyl 

algebra. Hence the element x l ~ 0 is invertible in A / I .  We deduct step by step that .~" is 

invertible in A'. Let ~ b e  its inverse. From ~ = 1, we see that we have, for all t ~ A / l, 

1 • {.~'. ~p(t)} = 0; thus ~be longs  to C. 

Let us verify that the field C / C  ~ )"is k. We have C / C  A 1"= C + l"/'i" by the second 

isomorphism theorem of Poisson algebras. We have the injective map C + 1 / I  ~ A~ I, 

but A / I  is isomorphic to A / I  and since A / I  is isomorphic to a Poisson-Weyl algebra 

by hypothesis, it follows that: C / C  N l ' c  k. 

From Lemma 22 m" = P '  N C, we deduct that C is complete for the m-adic topology: 

C : lim ,, C / m " .  

(2) - For all l ~ ~, m l / m  I+1 is a vector space over C / m  = k finite-dimensional. Let c 6 C, 

then c + m : co(eo + m) for some co in k. The class modulo m 2 of the element in m, 

c - c~le0, has a unique representation on the basis el + m 2 . . . . .  e,  l l~ q- m 2 o f m / m  2. 

Therefore, step by step, for all p E ~,  there exists a unique sequence of elements 

co . . . . .  c~(i, ) in k such that 

/=u(p)  

c - -  Z Clel G m p+I. 

/=0 

Thus we can construct a unique sequence of elements (Ci)i~P~ in k such that u, = 
~ l = i  C e c - 2_,/_-£ / z converges to 0 for the m-adic topology of C. 

- Let a ~ A, to approach a, we shall prove the following isomorphism: 

( l " ) ~ / ( l " + l )  A "~ A / I  ® m " / m  ''+1 . 

o From Lemma 22, we have therefore the isomorphism m " / m  '~+l ~-- H~,,,i~,,, 1 (A/1 ,  
l " / l " + l ) .  We know that (I"/~/(I'~+1) A ~ 1 " / I  ''+t. The module 17'/1 ''+1 is a 

Poisson A/1-module  generated by a centralizing sequence and the algebra is A / I  a 

Poisson-Weyl algebra; thus from Theorem 16, we have the isomorphism I " / I  ''+ i 
o I I n / l  1~+1 ) A / I ®k Hpoi~on ( A / , . It follows that ( I")'A / ( I ''+1 ) ~ ~-- A / I ® m" / m ''~ t 

By using this last isomorphism with the same argument as the one used previously, 

we construct a unique sequence ( a p ) p ~  of elements in A / I  ~-- ~p(A/l) such that 

a ~- Z apep. 
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(3) We proceed by induction on the length n of  the regular centralizing sequence 

(Xl . . . . .  x~).  
A A 

For n = 1, I = Axl .  From Lemma 21, the ideal I is A j z ( x l ) .  The element xl being 

central and regular, also is jA (xl) ,  the algebra A being noetherian. We check that in this 

case we have I 'N  C = CJA(Xl). We conclude that if I = Axj ,  then the maximal ideal of  

C is m l = CjA (Xl), generated by a regular centralizing sequence. Let us assume that I is 

generated by a regular centralizing sequence of length n, I = Axl + .  • • + Ax,,. Let us state 

= A / A x l ,  7 = I / A x l  and A the )--adic completion of  A. The ideal I = A~-~+. • • + A2-~ 

is generated by a regular centralizing seg.uence of  A with a length n - 1. From Lemma 21, 

the l -adic  completion of  A denoted by A is isomorphic to A"/A"jA (x l), A" being the l-adic 

completion of  A. Let us denote by p : A" > AA/AAjA(Xl) the canonical projection. We 

notice that A / I  = ( A / A x l ) / ( I / A x l )  is isomorphic to A/1  using the first isomorphism 

theorem of Poisson algebras. 

Let the diagram 

A / I  ~_ A / I  ~ . 

A/AjA(zl) 

Using the isomorphism 

A / I  ~-- A / I ,  
A 

we check that the map p o ~o is a lifting homomorphism ~ • A > A / I :  

p o ~o o ~ = IdA~ I . 
A A 

The lifting homomorphism from A / I  into A / A j ( X l )  is p o ~ ( A / I ) .  Let us denote by 

the commutant of  p o ~o(A/I) in AA/A"jA(Xl). We check that C = C/CjA(Xl) from the 

following lemma, which is further proved. From (1) the algebra C is a local ring. Its maximal 

ideal denoted by ~ is m / CjA (x I ); ad indeed (C / CjA (x I )) / (m / CjA (x I )) is isomorphic to 

C / m  and ( C / m )  is isomorphic to k. Thus we apply the lifting hypothesis of  induction 

to ~ = A~-S + • • - + A~-~n. The ideal ~ is of  length n - 1 and is generated by a regular 

centralizing sequence of  (y2 . . . . .  y,,) de C: 

= CY22 + ' - -  + C~,~. Thus we have 

m = C j ( x t )  + Cy2 + . . .  + Cyn, 

where the sequence (jA (Xl), Y2 . . . . .  Yn) is regular and centralizing. 
From a classical result (see [31, p. 48]), there exists a unique isomorphism of unitary 

algebras ~ ' :  k[[Xl . . . . .  Xn]] ~ C. [] 

L e m m a  24. Under the hypotheses o f  Theorem 23 and its notations, the sequence 

0 >Cjz(x l )  >C >PC >0 

is exact. 
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A A A 

Proof. The algebra A (respectively A / A j A ( X l ) )  are Poisson A/ I -modu le  via ~0 (respec- 
A A A 

tively p o ~p). From the short exact sequence 0 ~AjA(x t )  )A  ) A / A j A ( x l )  ~0, 

H ° A we infer the long exact sequence 0 ) pois~o~ / I ,  A'ja(xl))  ) H°oi,~.~on(A/l. A)---~ 
0 /-/poi.~on (a/I. X/XjA(x,)) , Hdo~o.(A/t, aja(xl)) ) . . .Hence i t i s enough toprove  

that H¢oi.,~on(A/l.: ~ , A jA(x i ) )  = 0; it is obtained from the following facts: 
A 

The ideal AjA (xl) is equal to A while the element ja  (xl) is regular. From the assertion of 

Theorem 23, the algebra A" is a product of  copies A / I ;  but we have Hptoi~o~ (A / I :  A /1 )  = 
0 from Proposition 10, and we use the general commutation formula ExtA (B, Vii Mi) " 

I-I ExtA (B, Mi). 

We have the equalities Hl~oissonO ( A / I ,  AjA(Xl) )  --= CjA(Xl),  H °Poisson(A/1, "A) = C, 
Hl]oi~son(A/l: A / A j A ( x , ) )  = C. Thus the sequence 0 ,C.jA(x,)  >C----->C ~0 is 
exact. [] 

2.5. Study of  the graded spaces 

2.5.1. Properties of  the l-adic graded algebras 
Let A be a Poisson algebra and I a Poisson ideal. The associated graded l-adic algebra 

Grt A = ~3n>oln/l n+l is a Poisson algebra endowed with the operations such that 

7rn(a)rrm(b) = yr,n+n(ab), and {rrn(a), rrm(b)} = 7r,,,+,_l ({a, b}) 

f o r n , m  >__ 0, a E I n andb  6 Ira, where zrn • I n ~ l n / l  n+l is the canonical projection et 

7r_l = 0 ( I - i  = I0 = A ) .  

We notice that in the Poisson algebra Gr1A, we have for all n > 0 {A / I ,  l n / l  "+l } = O. 
Ad indeed, for all n > 0 and for all x in I n, we have the relations {7ro(a), rrn(X)} = 

7rn-t ({a, x}) and {A, I 'z } C I '~ which implies {zoo(a), 7rn(x)} = 0, n > 0. 
We know that 1/12 is a Lie A/1-algebra. Therefore the symmetric algebra SA/I (1/12) 

is a Poisson algebra. The injective map i : 1/12----~GrIA is extending in a unique way 

by universal property to a Poisson algebra homomorphism from the symmetric algebra 

S A H ( I / I  2) into GrIA.  This homomorphism is surjective while all element of I " / I  ''+t 
is a product of  n elements in 1/12. We have the exact sequence of Poisson algebras 

S A / I ( I / I  2) ~GrIA ~0. 

If  we assume the existence of  a Poisson homomorphism ~o : A / I  ~ A, the l-adic graded 

algebras Gr /A may be provided with a Poisson structure of Poisson A/ I -modu le  via q). 

P roper ty  25. Let f,, " A ~ A / I  n be the canonical projection and rrn " I"-----+ I t ' / I  n+t. 

We suppose there exists a homomorphism of  Poisson algebras ~o from A l l  into A. Then 
(1) The algebra Gr1A is a Poisson A l l -modu le  defined by, Va ~ A,¥n >__ 0,Vx E I": 

rco(a).zr,, (x) = fn+l (¢p(yr0(a)))yr, (x), 

et 

[fro(a), yrn (x)] = {fi,+l (~p(rro(a))), zr. (x)}a/v, +1. 
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(2) Let us assume zro(a) = -d, a E A, we have the following formulas in the A/1-module 
GrIA: Vx, Vy ~ Gr1A etVa ~ A: 

[-d, xy] = x[~, y] + [~, x]y, 

et 

[a, {x, Y}Gr/A] = {[a, x], y} + {x, [a, Y]}Gr, A. 

Proof. 

(1) It is a simple verification. 

(2) See [31,p. 50]. [] 

Coro l la ry  26. Under the hypotheses of Property 25, we provide GrtA with the structure 

of Poisson A/1-module via ~. 

Then HOoisson:: (A / I ,  Gr /A)  is a Poisson subalgebra of Gr l A. 

2.5.2. Decomposition of the l-adic graded algebra and gradation of the commutant in its 

maximal ideal 
We see that the Poisson algebra A/1,  apart from the structure of quotient Poisson algebra, 

has a Poisson structure induced by this of Gr /A which is trivial. 

T h e o r e m  27 (Decomposition of the graded algebra). Let A and I verify the lifting hypoth- 
A 

esis (Section 2.2). We choose a lifting homomorphism from A / I  into A and provide Gr/A 

with the Poisson structure of A / l-module via ~o. Let us denote C the commutant of tp( A / l)  

in A, m = I 'A  C the maximal ideal of C and GrmC = ~,>_om'l/m ''+l the m-adic 

graded algebra of C. We provide the algebra A / I ® HOoisson ( A / I, Gr/A)  with the struc- 
ture of Poisson algebra extending the trivial Poisson of A / I and the Poisson structure of 

H°oisson ( A /1, Gr/A).  Then 
1. Themapdp" A/l®H°oisson(A/I, Grl A) >GrlAsuchthatfb(a®t) = a t , f o r a  c A / I  

and t E Gr/A, is an isomorphism of graded Poisson algebras. 
2. We have 

0 
GrmC -~ H~oisson(A/l, GrlA) ,  

0 0 
Gr~7-nc ) (H~oisso n (A/1, A')) --~ H~oisso n (A/1, Grl A), 

GrIA ~-- A / I  @Gr,nC. 

Proof. 
(1) Let us prove that the map q~ is a homomorphism of Poisson algebras. Let a, b ~ A / I  and 

x, y 6 G r / A , w e  have {a®x,  b®y} = {a, b}@xy+ab®{x ,  y} and we use the fact that 
[a, b] = 0, {a, x} = {b, y] ---- 0 in Gr /A.  The map q~ is an isomorphism. It is a conse- 
quence of Theorem 16. For all n > 0, the module I " / I  n+l is a Poisson A / / -modu le  gen- 
erated by a centralizing sequence and A / I  a Poisson-Weyl k-algebra; thus, we deduct 

the isomorphism A / I ® HOoisson ( A / l, In / l ''+I ) ~_ I " / I  n+ j . By property of  the tensor 
product and commutation of the Poisson cohomology with the direct sums, we obtain 
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0 A l l  ® H~oisson(a/l, G r / A )  "~ GrlA .  

(2) By virtue of  Lemma 22, we see that (1") A AC/(I '~+J) A A C ~_ H~)oisson (A/1 ,  I " / l " + l ) .  

But we have the equality ( I " )  A A C = m" and therefore the isomorphism m " / m  ''--I ~_ 
H ° ( A / 1 ,  I " / I  ''+l) fo rn  > 0. 

By commutation of  the Poisson cohomology with the direct sums, we conclude that Gr,,, C = 

H ° (A/1 ,  Gr t A). By using the item one, we have Gr t A _~ A / I  ® Gr,,, C. [] 

3. Lifting map and symmetric algebra of a nilpotent Lie algebra: transverse 
structure and commutant 

3. I. Algebraic study: lifting homomorphism from SCq) / I into lira ,,S(q. ) / l"  : associated 
commutant 

3. I. 1. Invariant ideals, Poisson ideals and centralizing sequence of  the symmetric algebra 

o f  a nilpotent Lie algebra 

Let .q be a nilpotent finite-dimensional Lie algebra. Let us recall that the adjoint group 

of t~ is the subgroup of Aut(~) generated by the exp ad x, x 6 .q. We denote it by F .  This 

group acts on ~ and S(g) by automorphisms; It acts on .q* by the contragradient operator. 

An ideal 1 of S(.q) will be said F- invar iant  if F • I C I .  The Poisson ideals of S(.q) are 

the F- invar iant  ideals of SCq). We shall use following Dixmier 's  proposition [8, Paragraph 

4.2.2.5, p. 155]: Let .q be a nilpotent Lie algebra, and I a Poisson ideal of S(.q). Any non-null 

Poisson ideal K of  S ( ~ ) / I  satisfies K rq C(SCq)/1)  5 ~ O. 

We shall prove that any Poisson ideal of  S(.q) is generated by a centralizing sequence. 

Theorem 28. Let A be a Poisson algebra. Let us suppose that A is noetherian and satisfies 
the propert),: 

(*) for  all Poisson ideal J o f  A, any non-null Poisson ideal o f  A / J has a non-null 

intersection with the center C ( A /  J)  o f  A /  J. 

Then any Poisson ideal o f  A is generated by a centralizing sequence (xj . . . . .  x,, ). 

Proof. Let 1 be a Poisson ideal of A; 

If I = 0, I is generated by a centralizing sequence; if I -¢ 0, by the property ( , )  applied 

with J = 0, we have I A C(A)  ~ O. Hence there exists a non-null central element of  I ,  x l ;  

Axl  is a Poisson ideal. 

I f I  = Axl ,  it is proved; if Axl  C 1,1et us set Ai = A / A x l  a n d I i  = I / A x i .  The 

ideal Ii is a non-null Poisson ideal of  A / A x l .  By virtue of the property ( , )  applied to 

J = Axj  we have I / A x l  7~ C ( A / A x l  ) ~ 0; therefore there exists x2 c I ,  x2 :~ xl such that 

{a, x2} E Axl ,  for all a E A. The sequence (x2, xl ) is centralizing in A. If I = Ax2 + Ax l ,  

it is proved; or else Ax2 + Axl  C I. 

Let us assume that in this way we have found a sequence (x,,),,c ~ such that (xl . . . . .  xi ) 

is centralizing for all i c ~ and that again we have Axi + A x i - i  + •. • + Axl  ~ 1 Vi E ~,  
then we have a strictly increasing sequence Axl  C Axj  + Ax2 C • .. C AXh + Axl, I + 
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• • • + Axl C .. • of  ideals in A. But it is impossible, while we have assumed that the algebra 

A is noetherian; Therefore 3p ~ ~ such that I = A x p  Jr- . . .  -k- A X l .  [] 

Corol lary  29. Let ~ be a nilpotent Lie algebra. Then any Poisson ideal I of  S ( g) is generated 

by a centralizing sequence. 

3.1.2. Lifting homomorphism associated to I rational ideal 

Following Dixmier [8, paragraph 4.2.6], a Poisson ideal I of the symmetric algebra S(g) 

of  a nilpotent Lie algebra g is called a rational ideal if C ( S ( g ) / I )  = k. According to Vergne 

[35] and Arnal et al. [1] or by introduction of  Poisson algebra isomorphisms (and not only 

commutative algebras) in Nouaz6-Gabriel 's results [23, paragraphs 3.2 et 3.3], the fact, that 

to be rational for an ideal is equivalent to the existence of  p 6 ~ such that the Poisson 

algebra S(.q)/I is isomorphic to Wp(k). 

Theorem 30. Let ~ be a nilpotent Lie algebra, I a rational Poisson ideal of  S(q~) and 

S(g) = li_m nS(g) / l  n. Then there exists a lifting homomorphism of  Poisson algebras qo • 

S(g) / l ~ S(g). The lifting homomorphism ~o is unique up to inner Poisson isomorphism. 

Proof. We apply the lifting theorem Theorem 17 to A = S(~). From Corollary 29, any 

Poisson ideal of  S(g) is generated by a centralizing sequence. The uniqueness of the lifting 

homomorphism ~0 is asserted by Theorem 19. [] 

3.1.3. Application to lifting homomorphism from S(g) / l (Iz ) into li+__m ,z S(g) / l n for 1 (#) 

associated ideal to # of.q*: regular centralizing sequence generating I (tz) 

For # 6 g*, we call the set of  polynomial functions on ~* vanishing on the orbit F • # 

of  # the associated ideal to #.  We denote it I (#). We know [8, Paragraph 6.3] that I (/z) is 

invariant rational, S(g ) / I (# )  ~- Wp(k) for some p. Theorem 30 is applied to it. 

Pukanszky's theorem [28] gives a parametrization of the coadjoint orbit through/z. From 

this parametrization, we show that it is easily possible to obtain generators P1, P2 . . . . .  Pn 

of  the ideal I (/~). The sequence (Pl,  P2 . . . . .  Pn) is a regular centralizing sequence of S(.q). 

Let us recall Pukanszky's notations (see [28,29]) concerning the nilpotent Lie algebras 

(see [27, p. 426]). Let g0 = {0} C ~l C ~2 C . . .  C ~m : ~q be a flag o f~  (dim ~i = i) 
such that [g, gi] _ .qi-I for all i 6 {1 . . . . .  m} and let (Xi . . . . .  Xm) be an adapted basis 

called Jordan-H61der, that is that gi = k X 1  ~ " ' "  ~ kXi,  for all i 6 {1 . . . . .  m}. The dual 
space g* of  the algebra g is provided with the following stratification: 

For /z  6 .q* we defined the set of  indices J~ = {1 < j < m : Xj ¢ ~i-I  + g#}, where 

gu = {x 6 g : Yy E g , / z ( [ x , y ] )  = 0 } . I f J u  = {jl < j2 < " "  < jd }, we shall have 

= ~ ~ kXi  ~ @ .. • @ kXja. Let A = {Jl~;/z ~ g*}, for e E A, we define the subset of  ~* 

called stratum. We have ~* = [ - - ) e6A ~f'2e, disjoint finite union of strata. 
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Theorem 31  ( [28]  P a r a m e t r i z a t i o n  o f  the  o r b i t  o f  .q*). Let  .q be a f in i te -d imensional  nilpo- 

tent  Lie algebra m and F the adjoint  group o f  q. Le t  (XI  . . . . .  Xm) be a Jordan-H6lder  

basis of~q. Let  e = {j l  < j2  < " ' "  < j J }  and ~ e  the corresponding stratum. 

Then, f o r  all  j E { 1 . . . . .  m}, there exist  func t ions  

Rj  • I2 e x k d ) k 

(It, YJl . . . . .  y j j ) l  ~ R e ( u  , Yh . . . . .  YJJ) 

such that 

(a) f o r  lz E S2e fixed, the func t ion  

k d ~ k 

(£h . . . . .  YJ,I) I ~ R~'(tz, Yi, . . . . .  YJJ) 

is a po lynomia l  func t ion  o f  the variables Yh . . . . .  vi~ ,, where h satisfies jh <_5 j < 

jh+l," 

(b) i f  j = jh E e, R~I ( # ,  yj, . . . . .  YJJ) = YJh V #  E I2e; 

(c) VIJ E S2e, the coadjoint  orbit  P • lz through lz in .q* is 

j = l  

X ~ , , where ( j ) j E l l  . . . . .  m} is a dual basis (X i ) i e { i  ...... ~d" 

For # E ~q*, w e  g ive  g e n e r a t o r s  o f  t he  i dea l  I ( # )  o f  S(~q) a s s o c i a t e d  to ~ .  

Proposition 32. With the hypotheses  o f  Theorem 31, let ~ in .q*. Then 

1. t ( u )  = ~ j ~ e ( x j  - ~ ( u ,  x j ,  . . . . .  x j , , ) )s( .q):  
2. the sequence (X j  - R)¢)j~e is central iz ing in S(~). 

R e m a r k  33 .  For j E e, k E { 1 . . . . .  d} j = jk,  we  have the equali ty Xjk - Ri~ (~ ,  Xh . . . . .  

XiJ)  = 0 by virtue o f  Theorem 31. We see, f rom  the f o r m  o f  the generators  Pj = Xi  - 

R j ' (~ ,  xj~ . . . . .  x i j ) ,  that the sequence  ( Pi)jCe generating the ideal I ( # )  is regular. For 

v 6 I-2 = G . # and Pj = XI  - Rf ,  j ~ e, we  have 

dPj  (v)  E .M,, .qv = O.iCe dPj  (v) ,  q~ = ( G i E e R X i )  ~ ~qv 

(see the fo l lowing  example  with ~ = tt54). 

Proof. 
(1)  L e t  e = {jr < • • • < j a} ,  £2e b e  t he  a s s o c i a t e d  s t r a t u m  a n d / z  E ,..(2 e.  L e t  us  p r o v e  

y :  i ~e ( X i - R~ ( #  , X j~ . . . . .  X j, t ) ) S (g ) C I ( #  ). It  is  e n o u g h  to  c h e c k  t ha t  ~o( X i - 

R~ (Iz, X h . . . . .  Xjd))  = O, V~O E G ' # ,  V j  ~ e, t h a t i s  to  say  q ~ j -  R)¢(/z, (0jl . . . . .  ~ i d )  = 

g-,j=m R~'(# . . . . . .  0 d e n o t i n g  ~ o ( X j )  = qgj. T h e  e l e m e n t  ~o E F • /~ i m p l i e s  %o = z_.~j=j . )'.it 
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yj,~)Xf for some y ~ k a, but ¢pj~ = R~ (/z, y) = yj, from the definition of R~ (voir 

recall), r 6 [1 . . . . .  d} and therefore q~j = R)e(#, ~oj, . . . . .  ~i,i). 

It remains to show that 

I(#) C Z ( X j  - R~(Iz, Xj, . . . . .  Zjj))S(g). 
j f~e 

Let v E l ( /z) .  Let us denote ~ = {il < i2 < . . '  < ik} = {1 . . . . .  m } -  e, 

v(Xi~ . . . . .  Xik, XA . . . . .  X j j )  = ~(XiL . . . . .  Xik ) considering v as function of  the only 

variables X#. We apply Taylor 's  formula to ~" at the ( Ril (I z, Xjl . . . . .  X j j  ) . . . . .  Ri k (# ,  

x s ,  . . . . .  XJ,,))- 
(2) Let us set  Pj = X j  - -  Rj with j f~ e (Pj = 0 for j 6 e). We notice that the elements 

PI . . . . .  Pj form a basis of  I A S(.qj) and give the equations of  the projection of  the 

orbit I2 = G . #  on ~*j. Indeed the element Rj e depends only on the variables XI 

with l _< j ,  l 6 e. We have I f3 S(~j) = ~ j , < j  S (~ j )P j , .  For X 6 .q, the bracket 

{Pj, X} = {Xj,  X} - {RT, x }  only depends on the variables Xj, with j '  < j while we 

have {.q, .qj} C .qj-I and R'j" c S(~j).  Thus we obtain 

{Pj, X} E S( .qj - l )  f-) I = Z S ( ~ j - I ) p i '  
j '<j 

the sequence Pj . . . . .  Pj is a centralizing sequence of S(.q). [] 

E x a m p l e  34. Let ~ = g41 be the nilpotent Lie algebra (see [26, p. 12]) having for basis 

(Xl . . . . .  X4) and which the Lie algebra structure is defined by the brackets: [X4, X3] = 
~ ~-,i=4 ~: g * '  

X2 et IX4, X2] = Xl .  Let e = {jl < j2} = {2, 4} and I2e = ~z_~i=lsi i ' ~1 ~;k 0} the 
x-, i=4 X* corresponding stratum. Le t /z  = ~.~i=l#i i 6 ~e ,  we have 

I (//.) = ( X  I - - / / . 1 ) S ( ~ 4 l )  -'~ (2#1X3 -- X 2 + /z~  -- 2/zl/z3)S(~q41). 

3.1.4. Commutant associated to a lifting homomorphism 

T h e o r e m  35. Let g be a nilpotent Lie algebra, tz ~ q. * and I (iz ) the Poisson ideal associated 
A 

to #. Let us denote ~p : SCq) / I (#) ~ S a lifting homomorphism (Theorem 17). Let C be 

the commutant o f  ~o( S ( ~) / I (tz ) ) in S. Let m = "F A C. Then 
(i) The Poisson algebra C is a local ring with residue field k, separated completely for  the 

m-adic topology, m being the maximal ideal 

(ii) C is isomorphic as an associative commutative unitary algebra to the formal  power 

series algebra k[[Xl . . . . .  Xr]], the integer r is the length o f  a regular centralizing 
sequence generating I (Iz), it is as well the codimension o f  the orbit through #. 

Proof. We apply Theorem 23 to A = S(~), l(/_t) generated by a regular centralizing 

sequence from Proposition 32. 
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3.1.5. Examples o f  lifting homomorphism o f  S(g) / l into lim,,S(~q)/l"(/J) and associated 
commutant 

We show lifting examples. 

In Example 36, we shall notice that the form of the formal lifting maps corresponds either 

to rational functions or to algebraic functions. In Example 37, we compare our results with 

those of Fokko du Cloux [11, pp. 198-199], and there is a strong similarity between the 

formulae giving the lifting homomorphism and the commutant in the respective spaces S(.q) 
A 

and U(.q). Only the graded algebras of the commutants in their maximal ideals are given 
by different formulae. 

E x a m p l e  3 6 .  We consider the nilpotent Lie algebra g54 [22,26], with basis (XI . . . . .  Xs) 

and which the non-null brackets [Xi, Xi], i > .j, are given by: [X5 X4] = X3: [Xs. X3] = 

X2: [X4, X3] = X i. The dual basis of ~4  is (X~, X* . . . . .  X~). We give a lifting homomor- 

ph i sma tapo in t~  in every stratum denoted by £2 t , £22, £23, £24. LetTr • S(,q) ~SO.~)/l(~) 
be the canonical projection. 

- We choose in .%4 at the point ~ E £21 = {~ = Y ~ i X ~ : ~ t  ~ 0}. The Poisson-Weyl 
algebra is S ( g ) / l ( ~ )  = Wl (k) = kip ,  q] where p = 7r(~( t X4) and q = 7r(X3). The 

lifting homomorphism of Poisson algebras, ~p ' S(g) / l (~) l  ~S, is given by cp(p) = 
-'-,h=,~. 1 "/(X X4X~ I and cp(q) = X3, where X~ j is the element L h = 0  t -  ~ _ ~t)h/(~l/,+1 

of  S. 

This formal  lifting map comes from rational functions, it is in accordance with Vergne's 

theorem [35, p. 327], the stratum ~1 is the Zariski open set o f  this theorem, we have 

{X4, X3} = Xl, XI is the central element. 
A 

The commutant C = C(WI (R), S) has tbr maximal ideal m generated by u i, u2, u3, 

whereul  = XI - ~ l , u 2  = X 2 a n d u 3  = ( 2 X t X s + X ~ - 2 X 2 X 4 ) 2  t X f l  a n d X i  -I 
x-'h=~ct l~h(X1 -- is the element z_~h=o ~-  J ~l)h/(~l)  I'+t of S'. The commutant is the algebra 

C = k[[ul,  u2, u3]], trivial Poisson algebra. 

- We choose in ~4  a point ~ 6 £22 = {~ = Y~ ~i X~ : ~1 = 0, ~2 -¢ 0}. 

The Poisson-Weyl algebra is S ( g ) / l ( ~ )  = Wj (k) = k[p,  q] where p = 7 r ( ~  I X5) 

and q = 7r (X3) = X3. The lifting homomorphism of Poisson algebras ~p • S(tI)/1 (~)~ 
= v " h = ~ c ~  1)h S, is given by ~p(p) X s X ~  ~_ and ~o(q) = X~, where X_~ I is the element z_~/,=ll , -  

(X2-~2) / ' / (~2 )  h+l of  S~. Again this formal  lifting map comes from rational 

functions. 
The commutant C = C (W~ (~), S')) has for maximal element m generated by u I, u 2, u 

where u~ = X~, u2 = X 2 -  it2 and u3 = (X~ + 2 X I X 5 -  2 X 2 X 4 ) 2 - 1 X 2  I, X~ 1 is 
X - 'h :v~z t the element z_~/,=0 ~-1)  ~ (X2 - ~2)h/(~2) h+~ de S. The commutant is the algebra C 

k[[u ~, u2. tO]], trivial Poisson algebra. 

- We choose in %4* apo in t~  6£2s_ = { ~  : ~ i X * ' ~  = 0 , ~ 2 = 0 , ~ 3 ~ 0 } .  

The Poisson-Weyl algebra is S(~ ) / I (~ )  = Wi (k) = k[p,  q] where p = 7 r ( ~  I Xs) and 

q = 7r(X4) = X4. The lifting homomorphism of Poisson algebras cp • S(.q)/l(~)l ~ S, 
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given by ~0(p) = 2Xs/(X3 + v/X2 + 2X~ Xs) et qg(q) = X4. The element qg(p) is is 

X5 ( _ l ) n +  ~ 1 • 3 • 5 . . .  (2n - 3) , )nv,~vn_l  y_2n+l 
~0 7~" ~--'X5X31 + 2 . 4 . 6 . . . 2 n  " ~'5~'t  "~3 

n ~ 2  

of S, with X31 the following element of S :  ~ - - ~ - ~ ( -  1)h (X3 - ~3)h/ (~3)  h+l . 

This formal lifting comes from algebraic functions, it seems impossible to find a lifting 
homomorphism formed of rational functions. 

The commutant  C = C(WI (~) ,  S) has for maximal ideal m generated by Ul, u2, u3, 

where Ul = X1, u2 = X2 e tu3  = , I x  2 
J 

3 + 2XtX5 - / Z 3 ,  u3 is the element 
v 

k=~  ( _ l ) k + l  1. 3 • 5 . . .  (2k - 3) 21~xkx_2k+lxk 
X 3 - / Z 3 + X I X s X 3 1 +  Z 2 . 4 . 6 . . . 2 k  5 3 l 

k = 2  

A 

in S. The commutant  is the algebra C = k[[u l, U2, U3]], trivial Poisson algebra. 

Let us recall Pedersen's  theorem [25, p. 547] expressed in algebraic terms: Let S2e be 

a stratum of  ~* and ~ 6 S2~, Pedersen describes a homomorphism of  associative algebras 

0 • S(~)/I(~) > S(~) t~) ,  such that the following diagram be commutative: 

p . 

0"--..'t 

where i is the canonical injective map of  S(~)/I(~) in its fractions field and S(~)//~ ) is 

the localization of  S(~) at I (~) .  The map p : S(~)1~) >S(.q)t~)/I(~)S(~)l~ is the 

canonical projection, and we use the isomorphism S(~)I~)/I(~)S(~)I~) ~- Frac(S(~) /  

I (~ ) ) .  

In the above example, Pedersen's  calculus leads to a homomorphism of  Poisson alge- 

bras on the strata ~1 and K22. On the stratum K23, Pedersen's  homomorphism defined by 

O(Xs~f I) = Xs/X3 and 0(X4) = X4 is not a Poisson homomorphism since we have 
{Xs /X3 ,  S 4 }  = 1 + XIXf2Xs .  

E x a m p l e  37 (Comparison of lifting maps in Sand in ~J). Let us consider the nilpotent Lie 

algebra ~53 with basis (Xl . . . . .  Xs) (see [26, p. 20]). The brackets of  g53 satisfy [Xs, X4] = 

X2, [Xs, X2] = Xl ,  [X4, X3] = Xl .  With the notations of  Section 3.1.4, for e = {jr < 
~-~i=5 ~- X * "  j2} = [4, 5}, the corresponding stratum is ~2e = [~ = z..,i=lbi i ' ~l = 0, ~2 # 0}. Let us 

fix an element # 6 S2e. Then we have, 

- The orbit of /z ,  F •/z : F . / z  = {/z2X~ + / z 3 X ~  + y 4 X ~  -+- y~Xs(Y4, Ys) ~ k2}. 

- The invariant rational ideal associated t o / z  : I( /z)  = XIS(~53) + (X2 - #2)S(~53) + 

(x3 - u3)S(.q53). 
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- The rational ideal J of  U associated to the orbit F. /1:  J = X 1 U (.q53) + (X2- /12)  U (g.s3) + 

(X3 - / 1 3 ) U ( g 5 3 ) .  

- A lifting homomorphism ¢p • S(g53)/I (/1) ) S = li_m ,,S(.q53)/I n (/1) given by ~o(X--~s/ 

/ 1 ~ ) = X s X ~  j _  . _ and ~0(~44) = Xz with X;, - j  the element X~ -j = Z..,k=0X~k=~-- I akj (X2 - / 1 2 ) k /  
/ z ~ +  1 .  - - 

- A lifting homomorphism 4) : U(.qs.0/J ) U = lira ,, U(.q53)/J" given by du Cloux and 

defined by ¢9(X---ss/#2) = XsX21and  ~ ( ~ )  = X4. 

- The commutant C = C(WI (~), S) with maximal ideal m generated by u l, u2 u~: 

m = (Ul, u2, u3)~s, where 

ul = X I , u 2  = ~ / X ~ - 2 X 1 X a - t z 2  and u3 = XI Xs X2 1  + X 3  

where u 2  is the element X ,  - / 1 2  - X j X4X~ l v ~ k = ~  ~ 1 _ -z_~k=2 ~ 3 5 . . .  ( 2 k - 3 ) / 2 4 6 . . .  2k) 
2kXkX -2k+lvk de S'. 4 2 "~1 

- The commutant  D = C(A1 (~),  9 ) )  with maximal  ideal n generated by tq. v2, v3: 

n = (vl, v2, v3)~-where 

Ul ---- X I ,  v2 = v / X ~  - 2 X I X 4  - / 1 2  and v3 = XIXsX~  I + X3, 

where w is the element X ,  - / 1 ,  - X l X4 X~- I _ v ' k  = ~  ~ 1 2k) 2 k - - - ~..,k=2 , 3 5 . . .  ( 2 k - 3 ) / 2 4 6 . . .  
X kY-2k+lvk de U. 

4"~2 ~'1 
- The commutant in S" is the formal power series C = k[[ut, u2, u3]], Poisson algebra 

with the law {u3, u2} = u~(u2 +/12) - j  

- The commutant  in U is the algebra of non-commutative formal power series D = 

k[[v~, re, v3]], which law algebra is given by [v3, v2] = v~(v2 +/12) -1 

The respective commutant formulae are identical, this leads to conjecture that the 
associative algebra D is a quantization of the Poisson algebra C. 

- The m-adic graded algebra of  C is the polynomial  algebra Gr,,, C = k[tl, t2, t3] endowed 

with the trivial Poisson. 

- The n-adic graded algebra of D calculated by du Cloux is the algebra Gr,, D = k[tl. t2, t3] 

described by [t3, t2] = t3//12. 

The formulae of the respective graded algebras differ. 

3.2. Geometric study: commutant and transverse structure 

Let .q be a real finite-dimensional nilpotent algebra. The dual space .q* is a Poisson 

manifold endowed with its Lie-Poisson structure. The goal of  this section is to compare the 

formal Poisson algebra transverse to a symplectic leaf, algebra obtained by Taylor series 

expansion of  the transverse algebra of  Weinstein 's  splitting theorem, with the commutant 
A 

~oS(.q)/l (#))  in S, where ~0 is a lifting homomorphism of S(g) into S, and/1 is a point of 

the considered leaf. 
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3.2.1. Transverse Poisson structure 

The structure of Poisson manifold has been defined and studied by Lichnerowicz [19]. 

The local structure of  a Poisson manifold has been specified by Weinstein [36] in Weinstein's 

splitting theorem. Let us recall the definition: 

Let M be a smooth manifold This manifold M will be called Poisson manifold if the 

algebra of infinitely differentiable functions C a ( M )  is endowed with a Poisson algebra 

structure. There exists on M a unique two times contravariant skew-symmetric tensor field, 

infinitely differentiable denoted by A such that for f and g in C ~c (M) : { f ,  g } = A (d f ,  dg). 

The tensor field A is called the Poisson tensor field of  the Poisson manifold M. A Poisson 

manifold will be denoted (M, A). The map A z : T * M  > T M  such that for all x in M, 

a ,  fl in Ta*M we have (A~x)(c0, fl) = Aix)(~, fi), is a morphism of the cotangent bundle 
into the tangent bundle, (., -) being the duality between T~*M and Z~M. 

Let M be a Poisson manifold. Let N be an immersed submanifold of M. Let us assume 

that N is endowed with a Poisson manifold structure. The submanifold N will be called 

Poisson submanifold of  the Poisson manifold M if the injection i : N ~ M is a Poisson 

morphism. 

Weinstein has proved [36] the following: 

Theorem38 .  F o r x  E N, let TxN ± : {~o E T~*M : ¥u E T~-N ~o(u) : 0}. We assume 

that: (i) '¢x ~ N,  A M ( X ) ( Z , N  ±) ~ T,-N = {0}; (ii) Yx E N, T~N ± A KerAM(X) ---- 
{0}. Then N is endowed with the Poisson structure (N, AN)  such that the vector bundles 

morphism A N : T*N > T N  is 

A~ = rr o A ~  orr*, 

w h e r e f o r x i n N ,  lhemapJrx : G M  >TxNis themapassoc ia ted to thedecompos i t ion  

Tx M = G N • A M ( x ) ( Tx N ± ). This structure is called the Poisson structure on N induced 

by M. The induced Poisson bracket is for  f ,  g E C~¢( N)  : { f ,  g } N = AM ( d f  o ;r, dg o ;r). 

Let (M, A) be a Poisson manifold, the set D = A:  ( T ' M ) ,  image of  the cotangent bundle 

by the bundle morphism A :, defines a C a distribution on the manifold M in Sussmann's 

terminology [32]. For all point y in M, there exists a unique immersed connected submani- 

fold S of M, maximal for inclusion, 3' in S, such that for all x of  S we have T, S = A~ (T~*M). 

The manifold S is called the symplectic leaf through y in M. It is obvious that every leaf S 
is a Poisson submanifold. 

Let us recall the definition of  the transverse structure to a symplectic leaf for a Poisson 
manifold. Let (M, A) be a Poisson manifold. Let S be a symplectic leaf M, x0 E S and 

N a submanifold of  M, with dimension the codimension of  S in M, going through x0 and 

transverse to S at x0 : TxoM = Tx-~S @ T~o N.  There exists a neighborhood U of x0 in N 
such that, for all x in U, we have T~M = AZ((TxN)  ±) + Tx-N. By virtue of  Theorem 38 
and its remark, we can endow U C N with the Poisson structure induced by M. It has been 
proved by Weinstein [36] (see also [6, Theorem 6.2]): 

Let x0 and xl be two points of  the symplectic leaf S and two submanifolds N0 and Nj 
such that x0 ~ NI), xl ~ Nj, and 
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T, i M = Z ~ S E 3 Z ~ i N i ,  i E {1,2}, 

we provide N0 et Ni with the Poisson structures induced by M, then there exists an iso- 

morphism of  Poisson manifolds from a neighborhood of  x0 in N0 onto a neighborhood of 

xl in N] which maps x0 on x l .  The notion of  Poisson manifolds isomorphism defines an 

equivalence relation on the set of Poisson manifolds. We have the following definition. 

Definit ion 39. Let M be a Poisson manifold, S a symplectic leaf and xo E S. Let N be a 

submanifold of M through x0 and transverse to S at x0, the equivalence class of the germ at 

xo of the Poisson structure induced on N by M will be called transverse Poisson structure 

to the leaf S. 

Let us recall Dirac 's  constraints formula. Let (M, A) be a Poisson manifold and N an 

immersed submanifold satisfying the conditions of  Theorem 38, then N is provided with the 

Poisson structure induced by that of  M. The formula by Dirac [7] has given a relationship 

between the bracket on N and the bracket on M. 

T h e o r e m  40 (Dirac's bracket formula). Let M be a Poisson manifoM. Let N be a subman- 

ifold satisfi.,ing the conditions (i) et (ii) o f  Theorem 38. Let xcl be in M. We choose U open 

set o f  M, xo E U and functions x a such that we have 

N A U = {y E U : x l ( y )  = x2(y)  . . . . . .  ~.2k(y) = 0}, 

such that the matrix 

[{x~,x~}(y)] ,  a,  J 3 E { I  . . . . .  2k} 

be invertible f o r  all y E N M U .  We denote f o r  y E N O U ,  ~,/3 E {1 . . . . .  2k} C'~/~(y) ---- 
. . . .  X -'/4=2k ,, 

{x ~, x~}(y):  L e t C  m, be such that f o r  ot, F E {i, 2k} z..,/~=t C~t~(Y)C~'(Y) ---- ~b. Let 

us denote i : N ~ M the canonical injection. 

Then the relation bem,een the Poisson structure induced on N and that o f  M is given by 

ct./~=2k 

{ f  o i, g o i}N = { f ,  g}m -- Z { f '  x"}M(Y)C~/~(Y){X~' g}M(Y) 
~.l~- I 

f o r a l l  f ,  g E C ~ ( M )  or, F E {1 . . . . .  2k}. 

Proof. See [2,31 ]. [] 

3.2.2. Comparison o f  the commutant with the formal  transverse Poisson algebra deduced 

from Weinstein's theorem 

We recall Weinstein 's  fundamental splitting theorem [36] given in its version C ~-. It 

allows us to calculate the transverse structure to a symplectic leaf of  a Poisson manitbld 

(see Definition 39). 

T h e o r e m  41 (Weinstein's theorem (version C~C)). Let M be a Poisson manifold, dim M ---- 

n. Let xo E M. We assume that the rank o f  A at xo is 2r. 
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. 

. 

Then, 

There exists a chart ( U , ~p , ~" ) o f  M at xo, called a Weinstein chart at xo, such that the as- 

sociated coordinate maps (Pl  . . . . .  Pr , ql . . . . .  qr , Zl . . . . .  Zn--2r), f o r i ,  j E {1 . . . . .  r}, 

c~, fl ~ {1 . . . . .  n -- 2r} satisfy: 

" {Pi, P/} = 0 {qi, qj } = 0 {Pi, qj } = 8i j  Kroenecker  delta),  

(*) {Pi, z~} = 0 {qi, z~} = O, 

/{z~, z~}(xo) = 0. 

The brackets {z~, zl~} are only dependent on the zl . . . . .  zn-zr. 

There exists an open set U including xo which is identified by a Poisson isomorphism to 

a product V × W, V open set o f ~  2r endowed with the canonical symplectic structure, 

W open set o f  ~n-Zr endowed with a structure o f  Poisson manifold which the rank o f  

the associated tensor is null at the projection point o f  xo on W. The factors V and W 

are unique up to local Poisson isomorphism. 

If  N is the man i fo ld  t ransverse  to the leaf  through x0, we have with qg(~-o) = (P0, q0, z0) 

N N U  = {x 6 U: p =  po, q = q o }  

for  all 4~, 7t E C ~ ( N ) .  

The Poisson algebra transverse to the leaf through xo, C ~ ( N ) ,  is p rov ided  with the 

bracket  

I < ~ . / ~ < n - 2 r  

The a lgebra  C ~ ( N )  is i somorph ic  to Weins te in ' s  commutan t  of  the p and q in C ~ ( M ) .  

For  examples  in d imens ion  six, we must  consul t  [31, pp. 91-92] .  

E x a m p l e  42. We still cons ider  the ni lpotent  Lie  a lgebra  9 = 95,3 [22,26]. 

We choose  l inear  coordinates ,  ~r : 9" > •5 which  to z..~i= Iv'i=5 xi X*i, associate  (xi)ic{I ..... 5}. 

In these coordinates ,  the Poisson bracket  is for  all f ,  g E C ~ (~5) {f, g } = - x 2  A4.5 ( f ,  g) - 

x lA2 ,5 ( f ,  g) - xl A3.4( f ,  g) ,  with A i . j ( f ,  g) = (Of /Oxi)(Og/Oxj) - (Of /Oxj)(Og/Oxi). 
i = 5  . 

First case. /z = ~--~i=l # i X i  a v e c  # l  ~ 0. A Weins te in  chart, def ined on an open set U 

inc lud ing /z ,  is (P l ,  q l ,  P2, q2, z l ) :  

X I ( X 5  - -  / Z 5 )  -'l- (X2 - -  / Z 2 ) ( X 3  - -  / / . 3 )  X4 - -  # 4  
P l =  , ql = x 2 - 1 z 2 ,  P 2 - - - - ,  

x 2 x 1 

q 2 = x 3 - - 1 z 3 ,  Zl = X l .  

~-- , i=5  . X *  Second case. lz = z..,i=l Izi i avec /z  I = 0 et #2 5 ~ 0. A Weins te in  chart  (P I, q l, z l, z2, 
z3) def ined on an open set U inc lud ing /z ,  is 

(x5 - lzs) 
P l  -D--x4 - -  # 4 ,  q l  - -  , Z l  : X l ,  

x 2  
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Z2 = ~/X 2 -- 2Xl ( X 4 -  # 4 ) -  / /2 ,  
(x5  - # 5 )  

Z3 ~---Xl "k-X3 -- ~3 .  
x2 

Computation of  the brackets {zi, z j } i , / ~ { l  ..... 3}: the element z l being central, we must 

only calculate {z2, z3 }: 

{Z2, Z3} = X~" {Z2, Z31 - -  ~1 

x~ - 2xj (x4 - / z 4 )  

The submanifold N transverse to the leaf through /z is: N (3 U = {x 6 ~,~* : Pl (x) = 

O, ql  (x)  ----- 0}. 

In the coordinates (zl ,  z2, z3) we have: ~0, q~ 6 C~C(N) {qo, 4qt:,.:2.:3t = - (z~/=2 

-+-#2)A2,3 (~0, ~b). 

T h e o r e m  43 (Weinstein's formal theorem). Let F be an algebra o f  formal  power  series 

over k in n indeterminates and m the maximal ideal o f F .  Let us assume that F is a Poisson 

algebra. Then, 

1. There exists an n-coordinate system (Pl . . . . .  Pr, ql . . . . .  qrzl . . . . .  Z , -2r)  formed o f  

elements o f  m, called a Weinstein formal  system with i. j E { 1 . . . . .  r }, e~, fl ~ { 1 . . . . .  n - 

2r }, such that: 

. 

F --~ k[[pl  . . . . .  P,., q] . . . . .  qr, ZI . . . . .  Zn-2r]]  

{Pi, P / } = O  { q i , q j } = O  { p i , q j } = & j  

{ P i , Z ~ } = O  { q i , z ~ } = O  

{z~,z~} c m .  

where 

The brackets {z~, z~} belong to k[[z]]. 

The formal  transverse Poisson algebra k[[z]] endowed with the brackets 

{u, v} = ~ {z~, z~} au Ov 
l<~,,~,,-> a:~ az--7' u,  v ~ k[[z]] 

is unique up to isomorphism o f  Poisson algebras. 

Proof.  We repeat mutatis mutandis the proof  of  thes C"V version of  the theorem. To show 

the uniqueness, in the case where k = ~ which will interest us further, we can use also 

Borel 's  theorem [34] which asserts that the map 

zr : C ~ ( E  " )  ~ R[ [X]  . . . . .  X,,]] 

associating to every function its Taylor 's  series is surjective. Then we use Weinstein 's  

previous theorem in version C a .  [] 

Weinstein 's  theorem has allowed us to calculate the transverse Poisson algebra at a point I~ 

of g*, algebra isomorphic to the Weinstein commutant at/z.  We expect the algebra obtained 

by Taylor 's series expansion of  Weinstein 's  commutant to be isomorphic to our commutant 
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computed  in S(.q-'-'-). In fact, we have computed the commutan t  in S" by successive approxi- 

mations,  The Weins te in  commutan t  is worked out by resolut ion of  differential equations.  

To compare the commutan t  obtained in S(.q) and the algebra obtained by expansion of the 

Weins te in  commutan t  in formal  power  series, we will immerse  these two algebras into a 

formal power series algebra. 

Still we use the Pukanszky and Pedersen ' s  notat ions (see Section 3.1 •3)• Let {0} = .q0 ___ 

.q I C .q2 C " • ' C .qm = .q be a flag of the Lie E-algebra.  

.q satisfying [.q, .qi] ___ .qi-I for all i E {1 . . . . .  m} and let (Xl . . . . .  X, , )  be an adapted 

basis to the flag, .qi = EX1 ~ . . .  ~ EXi .  Let $2 be an orbit of  .q* a n d / z  ~ 12, then # 

belongs  t o a s t r a t u m I 2 e  for s o m e e  = {jl < " "  < j a } w i t h d  = dim $2. Let us set 

= {1 . . . . .  m} - e = {il < . . .  < in}. We know that with the notat ions and results of  

Proposi t ion 32, the associated ideal to /z  is 

l=h 

I (tz) = Z (Xi t  - R~ (t-t, X j , ,  Xj2 . . . . .  Xj,~) )S(.q), 
/ = l  

with j~ _< i; < j~+ l .  Let us set Tjk = Xjk - - # j k ,  k E {1 . . . . .  k} et Ui; = Xi; - 

Re ( t t ,  X j~ ,X j : ,  .. X j~) , I  E {1, , h } . T h e n w e h a v e  

A 

S = ~[Ti~ . . . . .  T j ,A[[Ui  , . . . . .  Ui;,]]. 

A 

We notice that an e lement  of  S(.q) is a formal power  series with po lynomia l  coefficients of  

R[T].  

Let us consider  the Poisson manifo ld  (.q*, A) ,  the rank of A is d at /z .  

There exists a chart 

~0:U >E m at /z ,  

x i > (Pl . . . . .  Pr, ql . . . . .  qr, Z l  . . . . .  Zh), 

where U is an open set of  .q*, 2r  + h = m, ~o a Weinste in  chart. Denote  xk = f ( X k ) ,  k 

{1 . . . . .  n} for some f of.q*, we have 

Pi = p i ( x i l  . . . . .  Xih, Xjl . . . . .  Xjd) E C ~ ( U ) ,  

Pi  = Pi (xi,  . . . . .  xi , ,)  

considered only  as funct ion of  (xih). We proceed to a Taylor expansion/3i  at the point  

R = ( R i ; ( t z ,  xj t  . . . . .  Xjd))IE{I ..... h}. 

We have 

c3°tPi (R)(Y, - R)  c', P i ( ~ )  = P i ( R )  + ~-'t~,l<_~ 
where 

.~ = Xil , , Xih , Ol (Or I , O /h )  E ~ h  )~c~ __ ~1 . . . .  xffh 
• " "  = ' " " "  ~ - - X i l  ~ t h  

Ot! = 0/1 ! " " " O(h !, Iotl = Oq ÷ ' ' "  + ~ h .  
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Next, OaPi/OYa(R) is a a function of (Xir . . . . .  xjj) .  We cannot assert that the O"Pi/ 

O2~(R) are polynomial  in the variables xj~ . . . . .  xi j .  Then we develop 0 a Pi/O2 a (R) at 

(IXJ~ . . . . .  # j j ) .  Finally, we obtain an association to pi an element denoted if/, by the sub- 

stitution of the indeterminates Xi for the coordinates xi. We do not know if this element 

is in S" = ~[Til . . . . .  Ti, l][[Uil . . . . .  Uih]]" but we have 

~. E R[[Ti~ . . . . .  T/j]][[Ui. . . . . .  U/,,]] = R[[T, U]]. 

Similarly, we obtain an association to qi and zl the elements ~ and ~ of ~[[T,  U]], for 

i, j E {1 . . . . .  n}, 1 E {1 . . . . .  h}, which satisfy the relations ( , )  of  Weinstein 's  splitting 

theorem. The algebra R [ [ ~  . . . . .  ~ ] ]  is the algebra obtained by expansion of  Weinstein 's  

commutant in formal power series, we denote it by Cw. 

Thus the commutants C and Cw are included in the same algebra formal power series 

~[[T, U]], which permits us to compare them. 

T h e o r e m  44. Let .q be a finite-dimensional ~-nilpotent Lie algebra. Let IX E .q * and I (IX) be 

the rational Poisson ideal associated to IX. Let ~p : S(t,l)/l (IX) ~ S = lim ,, S(!O/I" (IX) be a 

lifting homomorphism o f  Poisson algebras. Let (Pi, qi, za) be a Weinstein chart o f  Poisson 

algebras at I~ and let Cw the formal transverse algebra to the leaf through I~ obtained by 

expansion in formal series o f  the Weinstein commutant. Then we have a Poisson algebras 

isomorphism between the algebra Cw and the commutant ~o( S(,q) / l (IX)) in S. 

c w  ~- c(~(s(.q)/t (~)), "g). 

Proof.  Let a = ~ i - ' ~ '  •Xi. The e lement /z  of  ~* belongs to some stratum ~,~ for some 

e --= { j l < • • • < j,t }, d being the dimension of the orbit through/~. Let ~ = { 1 . . . . .  m } -  e = 

{il < . . .  < i/,}. We know that the associated ideal to /z  is 

I = I t  

l (ix) = Z I(X# - R~ (IX, Xj , ,  Xi2 . . . . .  X i "))S(.q), 
/=1 

with ja < il < j a + l .  Let us say ~k = Xjl, - IXjI,, k E {1 . . . . .  k} and U# = X# - 

R~I (lz, Xi~, Xi2 . . . . .  Xi~), l E {1 . . . . .  h}. The choice of a lifting homomorphism 9) pro- 

vide elements S, (ai, b i ,  Ca), i, .I E 1 . . . . .  d, ot E 1 . . . . .  m -- 2r, satisfying Weinstein's 

relations. We have 

= R[Ti. . . . . .  Ti,,l[[Ui , . . . . .  Ui,,]] C ~[[T,  U]]. 

the elements ai, b i, ca which form a Weinstein 's  formal system of the algebra of  formal 

series ~[[T,  U]] (see Theorem 43 (Weinstein's formal theorem)). We have 

~ [ [ a , b , c ] ]  --~ R[[T, U]] and C = ~[[c]].  

Let (Pi, qj, za) be a Weinstein chart at /~ and the elements (fi}, ~./, ~ )  of  R[[T, U]] 

associated by expansion in Taylor series as above. These elements form a Weinstein formal 

system of the algebra ~[[T,  U]]. We have 

R[[~,~',~] _~ ~[[T, U]] et Cw = ~[[~]]. 
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By uniqueness of the formal transverse Poisson algebra in Weinstein's formal theorem 

(Theorem 43), the formal transverse Poisson algebras ~[[c]] and R[[~']] are isomorphic. 

Thus the commutant C and the formal transverse algebra to the leaf through #,  Cw, are 

isomorphic. [] 

We have the immediate following consequence. 

Corollary 45. With the hypothesis o f  Theorem 44, let I-t E g* and I (#)  be the Poisson 
A 

idealassociatedtolz .  Let~,o:S(8)/ l(Iz)  > S b e a l i f t i n g t h e o r e m ( T h e o r e m l 7 ) . L e t C b e  

the commutant o f  ~o(S(8)/I (Iz)) in S. 

I f  # belongs to an orbit o f  maximal dimension, the corresponding commutant C is a 

trivial Poisson algebra o f  formal series with dimension the codimension o f  the orbit. 

Example  46 (cf. [31]). We will find the commutant C from algebraic methods in 

Section 3.1.5. Weinstein's theorem allows us to find the commutant generators directly. 

3.2.3. Application of  Dirac's formula to 8" 

Using Dirac's bracket formula of  Theorem 40, We are going to clarify the transverse 

Poisson structure. With the aid of  the isomorphism given in Theorem 44, this formula 

calculates with ease the commutant C associated to a lifting homomorphism when we 

compare to the algebraic method of  successive lifting homomorphisms. We will even have 

a computation algorithm. Let ~ be a Lie R-algebra, hence we apply Dirac's formula to the 

manifold 8*, endowed with its Lie-Poisson structure which the Poisson tensor field A is 

such that 

# "  * 8' A u ~q > .q ,  # E  et A ~(x )=IZ ( [x , . ] ) .  

± being the annihilator of  the stabilizer ~u The characteristic space at/z,  Im A~ is ~l~' ~u 

at /z  in 8*. Thus, the characteristic space to the symplectic leaf through/z, this one being 

± Let m be a complement of .qa in .q. From the decomposition 8 : ~i~ ~ m, denoted 12 a, is 8u. 

we have 8" = 8 ± ~3 m ±, id est # 

T~* = T ~ .  ~ T~(# + m±). 

Therefore the manifolds/z + m ± and ~2a are transverse submanifolds at #.  

Theorem 47. Let 8 be a finite-dimensional Lie ff~-algebra. Let S-2 a symplectic in 8*. Let 

Iz E ~ ,  m be a complement o f  s~ in 8, (Z1 . . . . .  Z~) a basis o f  gu and (Xk+l . . . . .  Xn) a 
basis o f  m. Let N = Iz + m ±, be the transverse submanifold at Iz to the leaf and endowed with 

the Poisson structure induced by that o f  8*. We choose (Zl . . . . .  zk) as a local coordinate 

system of  N with zi = ~0(Zi), ~o E # + m ±. Then, expressed in the local coordinate system 

chosen for  N, the component o f  the tensor A N of  the induced Poisson structure are rational 

fractions 

AN(u ) --~ {Zi, Zj}N E ~(Zl . . . . .  Zk), i, j E {1 . . . . .  k}. 
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Proof.  Let ~r : t* > Nn be the system of  linear coordinates such that for q) in ,q*: 

O'(~O) = (~0(Zl)  . . . . .  ~ ( Z k ) ,  ~ ( X k + l )  . . . . .  ~ ( X n ) )  -~- (Zl . . . . .  Zk, Xk+l . . . . . .  rn). 

We notice that the choice of  the basis to express the coordinates is dictated by the fact that 

for all q) of  the submanifold # + m ± transverse to the leaf through #,  we have 

~p(Xi) = # i ,  i ~ {k + l ,n} .  

Let U be an open set in ~q* and let N = / ~  + m ± be the transverse submanifold to the leaf 

a t /z  = (/~1 . . . . .  # . ) ,  we have 

N C q U = { ~ o r U ,  xk+~ =/z~+~ . . . . .  x , = # , , } .  

The map ~ : N 71 U > Nk such that 

~(~o)(~o(Z~) . . . . .  ~o(Z~)) = (z~ . . . . .  zk) 

is a chart of N. From Dirac 's  formula, we have for ~o 6 U n N, i , j  6 {1 . . . . .  k}, 
or, fl 6 {k + 1 . . . . .  n} using Einstein's convention {zi, Zj}UnN(~O) = {Zi, Zj}:(q)) -- 

{z i ,x .}~:(~o)C~(tp){x#,z j}(~p) ,  where if C(~o) is the matrix [{xc~,x/~}:(~o)], then 

C-- I (~o) = [C ~ (q))] is the inverse matrix. We have {zi, zj }~r (~P) = ~o([Zi, Z~ ]) = alj ~o ( z l )  

where the (al.j) are the constants of  structure of 8, and l, i, j belong to { 1, k }. We see that 

{zi, zi. },r (~o) = a li,jT.l is a linear expression of z. Similarly {zi , Xc~ }((p) = aicezll + ai~# g y  is 

an affine expression of z. It is remaining to verify C "# (q)). We have the equalities C ~  (~o) = 
1 g {x,~, x/~ }(q)) = q)([X~, X/~]) = ac#~z! + a~c3tz Y. T h e  ma t r ix  C-1 (~o) = [C ~# (~o)] being the  

inverse matrix C(~o) = [C~# (~o)], the coefficients C "/~ (~o) are rational fractions in z~ . . . . .  zk. 

It is hence clear that {z i, z j } belongs to R(z I . . . . .  zh). [] 

Practical calculus. For ~o in N = / J  + m ±, we define the matrix 

)E g/' < ~ < > A(~p) B(~0) ] 
i {Zi,Zj}(qg) {Zi,Xc~}(q)) = D(g)) C ( ~ o ) ]  

m {x~,z/}(~o) {x,~,x~}(~o) 

such that D = - t  B. 

Expressed in the coordinates (zi), the matrix of  the tensor AN of the Poisson structure 

induced on N by .q* is 

a x ( ~ )  = A(q~) -- B(~o)C - l  (~ )D(~) .  

This formula provides an algorithm calculating the transverse structure, using Pedersen's  

computations. It is sufficient to calculate the stabilizer. 

x-'i=5[~X" (see [26, p. 20]) be the Lie algebra with non-null E x a m p l e 4 8 .  Let 853 = z.~i=l , 
brackets [Xi, Xj], i > j ,  [Xs, X4] = X2, [Xs, X2] = Xi ,  [X4, X3] = X~. We calculate 

the transverse structure at a point # of  the stratum ~,, defined by I2e = {Y~I-~ ~i X i*: ~J = 
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0, ~2 ~ 0}, with e = {jl < j2} : {4, 5}. The stabilizer of /2  being .q~, = RXI q3 EX2 @ 
RX3, we choose a complement m of gu in g53, m = RX4 q3 ~Xs.  We choose the linear 

coordinates a : g'53 > R 5 such that for 99 in ~'53 we have cr (99) = (99(X1) . . . . .  99 (Xs)) = 

(z 1, z2, z3, x4, xs). Let N be the submanifold transverse through/2 and U open set including 

/2, we have N A U = {99 6 U; x4 = #4, x5 =/25} with/2 = Zi--~/2i Xi*. An element of 

/2 + m ± has for coordinates (z 1, z2 +/22, z3 +/2 3,/24, #5). The tensor A U induced on N by 

~'53, expressed in the linear coordinates, is AN (qg) ---- A(99) q- B(99)C-It B(99) where A(99) 

is the matrix [{zi, zj}(99)], i, j E {1, 2, 3}, B(99) is the matrix [{zi, x~}(99)], i E {1,2, 3} et 

a 6 {4, 5} and where the matrix C - I  (99) is such that C(99) = [{x~, x/~}(99)], c~,/~ ~ {4, 5}. 
We find 

Ei 0 0 1 0 - -Z/ / (Z2 -]-/22) • 
A N ( Z l ,  Z2, ,7,3) = Z2/(Z2 q-/22) 0 

The structure is def ined  by the b racke t  {z3, Z2}N = Z~/(Z2 "}" /22) E E(Zl ,  Z2, 23). 

3.2.4. Comparison of  the commutant m-adic graded algebra with the symmetric algebra 
S(fl/~) of  the stabilizer at an orbit point 

Theorem 49. Let ~ be a nilpotent Lie Q-algebra. Let I~ E .q* and I (/2) the Poisson ideal 

associated to #. Let 99 : S (g ) / I  (/2) ~ S be a lifting homomorphism (Theorem 17). Let C 

be the commutant of  99( S(q. ) / l (tz ) ) in S a n d  I ' 0  C its maximal ideal denoted by m. Then 
1. the symmetric Poisson algebra of  ~ is isomorphic to the m-adic graded algebra of  C: 

GrmC -~ S(gu),' 

2. we have the isomorphism of Poisson algebras Gr l ~u)S(~) ~ S(.q) / l (/2 ) ® S(~u ). 

Proof. (1) According to Theorem 44 we can assert that the commutant C is isomorphic to 

the formal Poisson algebra Cw transverse to the leaf through/2 get by the formal power 

series expansion of  Weinstein commutant. We can calculate Cw with the aid of  Dirac's 

formula. Using this last ease (see Theorem 47), we choose a complement h de .% in ~q*, 

a basis (ZI . . . . .  Zk) of  .q~, a basis (Xk+l . . . . .  Xn) of  h and (zl . . . . .  zk, xk+l . . . . .  x,,) 

the associated linear coordinates. We have, for 99 E # + h ±, i, j 6 {1 . . . . .  k}, u,/~ 

{k + 1 . . . . .  n} using Einstein's convention 

{Zi, Zj }l~t+ h ± (99) : {Zi, Zj }!~* (99) -- {Zi, X~ }!~* (99)C err (99){x[3, Zj }(99), 

where if C(99) is the matrix [{x~, x~ }a* (99)], then C - I  (99) = [C~/~ (99)] is the inverse matrix. 
We know that the {zi, zj }t,+h± are rational fractions, thus we shall have 

Cw = k[[zl . . . . .  zk]]. 

Poisson algebra with maximal ideal mw = (zl . . . . .  zk) and with the brackets {zi, zj }cw 
given by Taylor's expansion of  the above formula. If  we have the inclusion [ ~ ,  h] C h, 
then 

{zi, z i}cw = {zi, zj}:~*,, 
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or else 

{Zi, 7~j}Cw = {Zi, Zj}~/*/~ -'}- Sij, 

where Sij is a formal power series in the zi with valuation v(Sij) such that v(Sij) > 2. The 

m-adic graded algebra Grin w Cw is generated as Gr0 (Cw)-algebra by Gr I (Cw) = m w / m  ~.. 
")  "Y 9 9 ~ ") 

We have GrmwCw = k[zl + m~v, ,2 + m~v . . . . .  zt + m~v] with {zi + m~v., zj + m~v} = 
{zi, z i}~* + mw. Thus we obtain GrmwCw _~ S(o/z). From the isomorphism Gr,,,~ Cw --~ 
Gr,,,C, we obtain GrmC ~ S(gI,). (2) Follows from Theorem 27. [] 

, i=6 Example  50. Let -q67 = ~ i = l  [~Xi be the nilpotent Lie algebra (see [26, p. 59]) with 

non-null brackets [Xi, Xj], i > j ,  [X6, Xs] = X3, [X6, X3] = X2, [X6, X3] = XI,  
[Xs, X4] = X2, [X4, X3] = - X l .  Let e = {5, 6} and let # be the point of the stratum 
S'2,, defined by a'-2e = {Y~j=9~:X i*" ,=1"~' , ~1 = 0, ~2 = 0, ~3 :~ 0}. The stabilizer of t~ be- 
ing ~.tu = RXI • ~X2 ~ ~X3 ~ ~X4, we choose m a complement of .% in .q67, m = 
~Xs G ~X6. We choose the linear coordinates cr : g~7-----+~5 such that for ~0 in .q~7 we 

have cr(~0) = (~0(Xl) . . . . .  ~o(X6)) = (zl, z2, z3, z4, xs, x6). An element of  # + m ± has 

for coordinates (zl, z2, z3 + #3, z4 + #4, #5,/~6)- By virtue of Dirac's brackets formula, 

we obtain, expressed in the linear coordinates, the tensor AN induces on N (see Example 

48). Thus the transverse structure is defined by {z4, Ze}N = (ZtZe/Z3 + #3) et {z4, z3 }x = 

--Zx + (z~/z3 + #3)- The m-adic graded algebra of the commutant C is the polynomial al- 

gebra k[zl, z2, Z3, z4], endowed with the Poisson structure defined by the non-null brackets 

{z3, z4} = zt. The algebra S(gl,) is the polynomial algebra k[Xt ,  X2, X3, X4] endowed 
with the Poisson structure defined by the non-null brackets {X3, X4} = XI. We verity 

that 

Gr,,,C -~ S(~%). 

3.2.5. Quantization example 
Let .q be a finite-dimensional nilpotent Lie algebra, U(g) its enveloping algebra and J 

a rational ideal on k. The algebra UCq)/J an Weyl algebra. In Section II of [11], Fokko 

du Cloux has shown that there exists a homomorphism of unitary associative algebras 

49 • U(.q)/J ~ li_m,,U(~)/J n = U(-'~q) such that fl  o 4~ = Idu / j ,  where ft  : U > U / J  

is the canonical projection. We shall denote by D the commutant associated to this lifting 

homomorphism, 

A 

D = { u  E U ' [ ~ b ( a ) , u ] = 0  Va c U/J} ,  

where the bracket is defined [a, b] = ab - ba for a, b in U. 

Fokko du Cloux has dealt in detail the case of the Lie algebra ~53 [11, pp. 196-199]. We 

have seen in the above example that the lifting homomorphim formulae from U(~q53)/J 
into U are identical to the lifting formulae from S(~53)/I into S, the ideals I and J being 

in correspondence with the help of  Dixmier's map [8, 6.3.3, p. 195]. For the commutants 
D in U and C in S, the formulae gave the generators of  the respective maximal ideals are 
also stricly the same. 
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Let us consider this similarity in more details. In the algebra U, for J = (Xi, X2 - 

~2, X3 - #3), the commutant is the non-commutative formal power series algebra k [[zl, z2, 

Z3]] such that zl is central and [z3, z2] = z2(z2  -4- # 2 )  -1 . 

In the algebra S, for I = (Xi, X2 - #2, X3 - #3), the commutant is the formal power 

series algebra k[[zl, z2, z3]] such that zl is central and {z3, z2} = z2(z2 + #2) - I  • We notice 

that in U we have [z3(z2 + /z2 ) ,  z2] = z~. If  we set Set z'3 = z3(z2 + #2), we get the 

isomorphism k[[zl, z2, z3]] --~ k[[zl z~, z~]] with 

[zq, z21 = 

The same holds in S, we have {z3(z2 + #2), z2} = z~. Settling z~ = z3(z2 +/z2) ,  we get 

the isomorphism k[[zj, z2, z3]] -~ k[[zl, z2, z~]] with 

lz , z21 = 

Let ?It, k[[zl, z2, z~]] be the algebras such that zlis central and [z~, z2] = tz 2. Then ,% 

is a deformation (see [10] for a precise definition) of ~10 = k[[zl, z2, z~]], Poisson algebra 

endowed with the bracket 

{z;, z 2 / =  

In this example, the associative algebra D is a quantization of  the Poisson algebra C. In 

the general case we can conjecture: "Fokko du Cloux's is a quantization of  the transverse 
structure". The comparison of  the commutant D and C is not easy. The symmetrization 

co : S ~ U does not map the ideal I on the ideal J although we can find generators of  I 

such their images by co generate J (voir [14]). 

Noticing the similarity between the formulas which give the commutants, we are tempted 

to use Dirac's formula to the search of  the commutant D in U. The obstruction is to define 

the inverse matrix which appears in Dirac's formula. 
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